skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2012091

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In the mountainous headwaters of the Colorado River episodic dust deposition from adjacent arid and disturbed landscapes darkens snow and accelerates snowmelt, impacting basin hydrology. Patterns and impacts across the heterogenous landscape cannot be inferred from current in situ observations. To fill this gap daily remotely sensed retrievals of radiative forcing and contribution to melt were analyzed over the MODIS period of record (2001–2023) to quantify spatiotemporal impacts of snow darkening. Each season radiative forcing magnitudes were lowest in early spring and intensified as snowmelt progressed, with interannual variability in timing and magnitude of peak impact. Over the full record, radiative forcing was elevated in the first decade relative to the last decade. Snowmelt was accelerated in all years and impacts were most intense in the central to southern headwaters. The spatiotemporal patterns motivate further study to understand controls on variability and related perturbations to snow water resources. 
    more » « less
    Free, publicly-accessible full text available March 16, 2026
  2. Abstract Seasonal snowpacks in mountain drainages of the Great Salt Lake Basin (GSLB), western United States, are the primary surface water supply to regional agriculture, the metropolitan Wasatch Front, and the terminal Great Salt Lake. Spring dust emissions from the eastern Great Basin result in a dust‐darkened GSLB snowpack, locally accelerating snowmelt relative to dust‐free conditions. Such acceleration has been linked to streamflow forecasting errors in the adjacent Colorado River Basin, but snow darkening impacts within the GSLB are largely uninvestigated. To quantify the dust impact, we analyzed patterns in dust radiative forcing (RFdust) over the MODIS record (2001–2023) using spatially and temporally complete RFdustand fractional snow‐covered area products. For validation, retrievals were cross‐referenced with in situ RFdustobservations. Results showed that RFdustwas present every year and had no significant trend over the record. Spatially, RFdustwas similar across all three subbasins. Temporally, RFdustexhibited high interannual variability (−30 to +40 Wm−2from record means) and has declined slightly in regions of the eastern GSLB. Controls of RFdustmay be linked to seasonal meteorology and drought conditions, but drivers remain uncertain. Further understanding of the distribution and controls of RFdustin the GSLB during changing climate and weather patterns may allow us to predict snowmelt more accurately. 
    more » « less
  3. Abstract Dust transported from rangelands of the Southwestern United States (US) to mountain snowpack in the Upper Colorado River Basin during spring (March‐May) forces earlier and faster snowmelt, which creates problems for water resources and agriculture. To better understand the drivers of dust events, we investigated large‐scale meteorology responsible for organizing two Southwest US dust events from two different dominant geographic locations: (a) the Colorado Plateau and (b) the northern Chihuahuan Desert. High‐resolution Weather Research and Forecasting coupled with Chemistry model (WRF‐Chem) simulations with the Air Force Weather Agency dust emission scheme incorporating a MODIS albedo‐based drag‐partition was used to explore land surface‐atmosphere interactions driving two dust events. We identified commonalities in their meteorological setups. The meteorological analyses revealed that Polar and Sub‐tropical jet stream interaction was a common upper‐level meteorological feature before each of the two dust events. When the two jet streams merged, a strong northeast‐directed pressure gradient upstream and over the source areas resulted in strong near‐surface winds, which lifted available dust into the atmosphere. Concurrently, a strong mid‐tropospheric flow developed over the dust source areas, which transported dust to the San Juan Mountains and southern Colorado snowpack. The WRF‐Chem simulations reproduced both dust events, indicating that the simulations represented the dust sources that contributed to dust‐on‐snow events reasonably well. The representativeness of the simulated dust emission and transport in different geographic and meteorological conditions with our use of albedo‐based drag partition provides a basis for additional dust‐on‐snow simulations to assess the hydrologic impact in the Southwest US. 
    more » « less
  4. Abstract Quantifying the routing of snowmelt to surface water is critical for predicting the impacts of atmospheric deposition and changing land use on water quality in montane catchments. To investigate solute sources and streamflow in the montane Provo River watershed (Utah, USA), we used time‐series87Sr/86Sr ratios sampled at three sites (Soapstone, Woodland and Hailstone) across a gradient of bedrock types. Soils are influenced by aeolian dust contributions, with distinct87Sr/86Sr ratios relative to siliciclastic bedrock, providing an opportunity to investigate shallow versus deeper flow paths for controlling water chemistry. At the most upstream site (Soapstone), Sr concentrations averaged ~17 μg/L with minimal dilution during snowmelt suggesting subsurface flow paths dominated streamflow. However, a decrease in87Sr/86Sr ratios from ~0.717 during baseflow to as low as ~0.713 during snowmelt indicated the activation of shallow flow paths through dust‐derived soils. In contrast, downstream sites receiving water inputs from Sr‐rich carbonate bedrock (Woodland and Hailstone) exhibited strong dilution of Sr from ~120 to 20 μg/L and an increase in87Sr/86Sr ratios from ~0.7095 to ~0.712 during snowmelt. A three‐component mixing model using87Sr/86Sr ratios and Sr concentrations at Soapstone showed water inputs were dominated by direct snowmelt and flushed soil water during runoff and groundwater during baseflow. At Woodland and Hailstone, a two‐component mixing model showed that the river was a mixture of groundwater and up to 75% upstream channel water during snowmelt. Our findings highlight the importance of flushed soil water for controlling stream water discharge and chemistry during snowmelt, with the signal from the upstream site propagating downstream in a nested catchment. Further, aeolian dust contributes to the solute chemistry of montane streams with potential impacts on water quality along shallow flow paths. Potential contaminants in these surface soils (e.g., Pb deposition in dust) may have significant impacts on water quality during snowmelt runoff. 
    more » « less
  5. Glacial meltwater contributions to streams depend on watershed characteristics that impact water quantity and quality, with potential changes as glaciers continue to recede. The purpose of our study was to investigate the influence of glacier and bedrock controls on water chemistry in glacial streams, focusing on a range of small to large watersheds in Alaska. Southcentral Alaska provides an ideal study area due to diverse geologic characteristics and varying amounts of glacial coverage across watersheds. To investigate spatial and temporal variability due to glacial coverage and bedrock type, we analyzed water samples (n= 343) from seven watersheds over 2 years for major and trace element concentrations and water stable isotopes. We found variable water chemistry across the glacial rivers related to glacial coverage and the relative amount of metamorphic, sedimentary, and igneous bedrock. Some sites had elevated concentrations of harmful trace elements like As and U from glacier melt or groundwater. Longitudinal (upstream to downstream) variability was apparent within each river, with increasing inputs from tributaries, and groundwater altering the water chemistry relative to glacier meltwater contributions. The water chemistry and isotopic composition of river samples compared with endmember sources suggested a range from glacier-dominated to groundwater-dominated sites along stream transects. For example, water chemistry in the Knik and Matanuska rivers (with large contributing glaciers) was more influenced by glacier meltwater, while water chemistry in the Little Susitna River (with small glaciers) was more influenced by groundwater. Across all rivers, stream chemistry was controlled by glacier inputs near the headwaters and groundwater inputs downstream, with the water chemistry reflecting bedrock type. Our study provides a greater understanding of geochemical and hydrological processes controlling water resources in rapidly changing glacial watersheds. 
    more » « less
    Free, publicly-accessible full text available April 10, 2026
  6. Free, publicly-accessible full text available March 20, 2026
  7. Free, publicly-accessible full text available March 1, 2026
  8. Free, publicly-accessible full text available December 31, 2025
  9. Dust events originate from multiple sources in arid and semi-arid regions, making it difficult to quantify source contributions. Dust geochemical/mineralogical composition, if the sources are sufficiently distinct, can be used to quantify the contributions from different sources. To test the viability of using geochemical and mineralogical measurements to separate dust-emitting sites, we used dust samples collected between 2018 and 2020 from ten National Wind Erosion Research Network (NWERN) sites that are representative of western United States (US) dust sources. Dust composition varied seasonally at many of the sites, but within-site variability was smaller than across-site variability, indicating that the geochemical signatures are robust over time. It was not possible to separate all the sites using commonly applied principal component analysis (PCA) and cluster analysis because of overlap in dust geochemistry. However, a linear discriminant analysis (LDA) successfully separated all sites based on their geochemistry, suggesting that LDA may prove useful for separating dust sources that cannot be separated using PCA or other methods. Further, an LDA based on mineralogical data separated most sites using only a limited number of mineral phases that were readily explained by the local geologic setting. Taken together, the geochemical and mineralogical measurements generated distinct signatures of dust emissions across NWERN sites. If expanded to include a broader range of sites across the western US, a library of geochemical and mineralogical data may serve as a basis to track and quantify dust contributions from these sources. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025