skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Range-wide salamander densities reveal a key component of terrestrial vertebrate biomass in eastern North American forests
Characterizing the population density of species is a central interest in ecology. Eastern North America is the global hotspot for biodiversity of plethodontid salamanders, an inconspicuous component of terrestrial vertebrate communities, and among the most widespread is the eastern red-backed salamander,Plethodon cinereus. Previous work suggests population densities are high with significant geographic variation, but comparisons among locations are challenged by lack of standardization of methods and failure to accommodate imperfect detection. We present results from a large-scale research network that accounts for detection uncertainty using systematic survey protocols and robust statistical models. We analysed mark–recapture data from 18 study areas across much of the species range. Estimated salamander densities ranged from 1950 to 34 300 salamanders ha−1, with a median of 9965 salamanders ha−1. We compared these results to previous estimates forP. cinereusand other abundant terrestrial vertebrates. We demonstrate that overall the biomass ofP. cinereus, a secondary consumer, is of similar or greater magnitude to widespread primary consumers such as white-tailed deer (Odocoileus virginianus) andPeromyscusmice, and two to three orders of magnitude greater than common secondary consumer species. Our results add empirical evidence thatP. cinereus, and amphibians in general, are an outsized component of terrestrial vertebrate communities in temperate ecosystems.  more » « less
Award ID(s):
2224545
PAR ID:
10573325
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Royal Society
Date Published:
Journal Name:
Biology Letters
Volume:
20
Issue:
8
ISSN:
1744-9561
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the influence of spatiotemporal variation in environmental factors on phenology is crucial for determining the effects of climate change on amphibian populations. Here we quantify the relative influence of temperature and precipitation on surface activity of a terrestrial salamander, the Eastern Red-Backed Salamander (Plethodon cinereus) in Richmond, Virginia, USA. Specifically, we used spatial capture recapture methods to test the influence of different metrics for temperature and precipitation on baseline detection probability. We found that soil temperature, particularly at 30 cm below the surface, is a better predictor of detection than air temperature or cumulative precipitation; however, greater cumulative precipitation resulted in a higher detection probability. We also show that a quadratic effect was favored in all scenarios suggesting this species has an optimal soil temperature and cumulative precipitation for surface activity during a particular year. The highest detection probability was associated with 12.6º C at 30-cm below the surface and 0.75 cm of cumulative precipitation during the 2-d period prior to the survey occasion. In addition to contributing knowledge on the specific environmental metrics that best predict surface activity for P. cinereus, this work illustrates the importance of incorporating soil temperature measurements in capture mark-recapture studies of terrestrial salamanders. For projects with limited resources, our work indicates which fine-scale environmental measurements associated with terrestrial salamander activity in the southern portion of the range are best. 
    more » « less
  2. Abstract Color polymorphic animals offer a unique system for studying intraspecific phenotypic responses to climate change. Discrete color morphs are easy to identify, and correlated trait responses of morphs can indicate how climate warming may facilitate long-term maintenance of polymorphisms. We use a historical dataset spanning 43 years to examine temporal shifts in color morph frequency and body size in response to climate in the Eastern Red-backed Salamander, Plethodon cinereus , which contains a widespread striped/unstriped color polymorphism. We created a pipeline to extract high-throughput trait data from fluid-preserved museum specimens where we batch-photographed salamanders, de-aggregated individual specimens from photographs, and solicited help of community scientists to score color morphs. We used a linear modeling framework that includes information about spatial population structure to demonstrate that color morph frequency and body size vary in response to climate, elevation, and over time, with an overall trend of higher frequency and decreased body size of the striped morph, but increased size of the unstriped morph. These surprising results suggest that morphs may be responding to multiple climate and geographic drivers through co-adapted morphological changes. This work highlights new practices of extracting trait data from museum specimens to demonstrate species phenotypes response to climate change. 
    more » « less
  3. Abstract The southern Great Plains of the USA has great potential to produce biofuel feedstock while minimizing the dual stresses of woody plant encroachment and climate change. Switchgrass (Panicum virgatum) cultivation, woody biomass captured during removal of the encroaching eastern redcedar (Juniperus virginiana) to restore grasslands and thinning of the native oak forest can provide an integrated source of feedstock and improve ecosystem services. In north‐central Oklahoma, we quantified productivity and ecosystem water use of switchgrass stands and degraded ecosystems encroached by eastern redcedar and compared these to native oak forest and tallgrass prairie ecosystems. We measured aboveground net primary productivity (ANPP) using allometric equations (trees) and clip plots (herbaceous), and evapotranspiration (ET) using a water balance approach from gauged watersheds, and calculated water use efficiency (WUE = ANPP/ET) from 2016 to 2019. Among vegetation cover types, ANPP averaged 5.1, 5.4, 6.0, and 7.8 Mg ha−1 year−1for the prairie, oak, eastern redcedar, and switchgrass watersheds and was significantly greater for switchgrass in 2018 and 2019 (2 and 3 years post establishment) when it reached 8.6 Mg ha−1 year−1. Averaged across 2017–2019, ET was significantly greater in the forested watersheds than the grassland watersheds (1022 mm year−1for eastern redcedar, 1025 mm year−1for oak, 874 mm year−1for prairie, and 828 mm year−1for switchgrass). The mean WUE was significantly greater (9.47 kg ha−1 mm−1) for switchgrass than for the prairie, eastern redcedar, and oak cover types (6.03, 6.02, and 5.31 kg ha−1 mm−1). Switchgrass offered benefits of greater ANPP, less ET, and greater WUE. Our findings indicate that an integrated biofuel feedstock system that includes converting eastern redcedar encroached areas to switchgrass and thinning the oak forest can increase productivity, increase runoff to streams, and improve ecosystem services. 
    more » « less
  4. Abstract Hybridization between species affects biodiversity and population sustainability in numerous ways, many of which depend on the fitness of the hybrid relative to the parental species. Hybrids can exhibit fitter phenotypes compared to the parental lineages, and this ‘hybrid vigour’ can then lead to the extinction of one or both parental lines.In this study, we analysed the relationship between water loss and gas exchange to compare physiological performance among three tiger salamander genotypes—the native California tiger salamander (CTS), the invasive barred tiger salamanders (BTS) and CTS × BTS hybrids across multiple temperatures (13.5°C, 20.5°C and 23.5°C). We developed a new index of performance, the water‐gas exchange ratio (WGER), which we define as the ratio of gas exchange to evaporative water loss (μLVO2/μL H2O). The ratio describes the ability of an organism to support energetically costly activities with high levels of gas exchange while simultaneously limiting water loss to lower desiccation risk. We used flow through respirometry to measure the thermal sensitivity of metabolic rate and resistance to water loss of each salamander genotype to compare indices of physiological performance.We found that temperature had a significant effect on metabolic rate and resistance to water loss, with both traits increasing as temperatures warmed. Across genotypes, we found that hybrids have a higher WGER than the native CTS, owing to a higher metabolic rate despite having a lower resistance to water loss.These results provide a greater insight into the physiological mechanisms driving hybrid vigour and offer a potential explanation for the rapid spread of salamander hybrids. More broadly, our introduction of the WGER may allow for species‐ or lineage‐wide comparisons of physiological performance across changing environmental conditions, highlighting the insight that can be gleaned from multitrait analysis of organism performance. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  5. Abstract The body size of aquatic vertebrates is declining across populations and ecosystems worldwide owing to warmer water temperature and changing streamflow. In freshwaters, the effects of stream network position and density‐dependent factors on body size are less understood. We used an extensive dataset spanning 41 stream sites over 7 years to evaluate how density‐dependent and density‐independent factors influence the size of two top predators in small watersheds, Coastal Cutthroat TroutOncorhynchus clarkii clarkiiand Coastal Giant SalamandersDicamptodon tenebrosus. We tested three hypotheses of body‐size variation for trout and salamanders, including intraspecific density dependence, interspecific density dependence, and resource availability, using empirical observations in hierarchical linear mixed models in a model‐selection framework. In our best‐supported models, the strongest predictors of size were conspecific negative density dependence, as expected, suggesting greater intraspecific interactions probably owing to conspecific individuals having similar requirements. We reveal a biogeographic pattern in which body size peaks in middle stream‐network positions and plateaus or declines at lower and upper locations, proposing that stream network position also plays a role in determining body size in small watersheds. Salamander density also has a quadratic effect on adult trout size, with salamanders having a greater overall effect on the body size of both species than trout, suggesting that salamanders might be more dominant than trout in some interactions. Collectively, we found that biotic interactions, mainly conspecific but also interspecific, and stream‐network position affect trout and salamander body sizes in small watersheds. 
    more » « less