Understanding the influence of spatiotemporal variation in environmental factors on phenology is crucial for determining the effects of climate change on amphibian populations. Here we quantify the relative influence of temperature and precipitation on surface activity of a terrestrial salamander, the Eastern Red-Backed Salamander (Plethodon cinereus) in Richmond, Virginia, USA. Specifically, we used spatial capture recapture methods to test the influence of different metrics for temperature and precipitation on baseline detection probability. We found that soil temperature, particularly at 30 cm below the surface, is a better predictor of detection than air temperature or cumulative precipitation; however, greater cumulative precipitation resulted in a higher detection probability. We also show that a quadratic effect was favored in all scenarios suggesting this species has an optimal soil temperature and cumulative precipitation for surface activity during a particular year. The highest detection probability was associated with 12.6º C at 30-cm below the surface and 0.75 cm of cumulative precipitation during the 2-d period prior to the survey occasion. In addition to contributing knowledge on the specific environmental metrics that best predict surface activity for P. cinereus, this work illustrates the importance of incorporating soil temperature measurements in capture mark-recapture studies of terrestrial salamanders. For projects with limited resources, our work indicates which fine-scale environmental measurements associated with terrestrial salamander activity in the southern portion of the range are best.
more »
« less
Range-wide salamander densities reveal a key component of terrestrial vertebrate biomass in eastern North American forests
Characterizing the population density of species is a central interest in ecology. Eastern North America is the global hotspot for biodiversity of plethodontid salamanders, an inconspicuous component of terrestrial vertebrate communities, and among the most widespread is the eastern red-backed salamander,Plethodon cinereus. Previous work suggests population densities are high with significant geographic variation, but comparisons among locations are challenged by lack of standardization of methods and failure to accommodate imperfect detection. We present results from a large-scale research network that accounts for detection uncertainty using systematic survey protocols and robust statistical models. We analysed mark–recapture data from 18 study areas across much of the species range. Estimated salamander densities ranged from 1950 to 34 300 salamanders ha−1, with a median of 9965 salamanders ha−1. We compared these results to previous estimates forP. cinereusand other abundant terrestrial vertebrates. We demonstrate that overall the biomass ofP. cinereus, a secondary consumer, is of similar or greater magnitude to widespread primary consumers such as white-tailed deer (Odocoileus virginianus) andPeromyscusmice, and two to three orders of magnitude greater than common secondary consumer species. Our results add empirical evidence thatP. cinereus, and amphibians in general, are an outsized component of terrestrial vertebrate communities in temperate ecosystems.
more »
« less
- Award ID(s):
- 2224545
- PAR ID:
- 10573325
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Royal Society
- Date Published:
- Journal Name:
- Biology Letters
- Volume:
- 20
- Issue:
- 8
- ISSN:
- 1744-9561
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Harvey, MB (Ed.)What makes a model organism? Identifying the qualities of a model organism has been given a great deal of attention in the biomolecular sciences, but less so in the fields of evolution, ecology, and behavior (EEB). In contrast to the biomolecular sciences, within EEB, biotic and abiotic variation are features to understand, not bugs to get rid of, and EEB scientists often select organisms to study which best suit the scientific question at hand. Successful EEB model organisms can be studied at multiple biological scales and often have a wealth of accumulated knowledge on which current research programs build. A recent call within EEB communities to invest in the development of diverse model systems led us to evaluate the standing of a widespread, abundant, terrestrial salamander in this review: the Eastern Red-backed Salamander (Plethodon cinereus). We first look at salamanders as EEB models more generally and determine where P. cinereus fits in this broader context. The core of our monograph reviews over 400 recent studies on P. cinereus and highlights inconsistencies, gaps in our knowledge, and future directions in the context of our findings and those of three prior comprehensive reviews: two comprehensive reviews published in 1998 and 2013, and a book published in 2016 focused on the behavioral ecology of P. cinereus. After completing our review, we conclude by evaluating the current status of P. cinereus as a model organism in EEB and describe how a collaborative research network, SPARCnet, can serve as a starting point for improving the range-wide understanding of P. cinereus ecology, evolution, and behavior. More generally, we argue that collaborative research networks can and should be applied to other EEB model systems, so that future EEB research may benefit from model systems that accurately represent, in Darwin’s words, “endless forms most beautiful and most wonderful.”more » « less
-
Synopsis Emerging infectious diseases have been of particular interest as a major threat to global biodiversity. In amphibians, two fungal sister taxa, Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal), along with the viral pathogen ranavirus, have affected global populations. Factors such as host traits, abiotic and biotic environmental conditions, and pathogen prevalence contribute to species-specific disease susceptibility. The eastern United States is home to the Appalachian Mountain system, known as a “hotspot” for salamander biodiversity. Bd and ranavirus are present throughout the Appalachians, and a Bsal emergence could be imminent. Throughout the Appalachians are the spotted salamanders, Ambystoma maculatum, a mostly terrestrial salamander that participates in mass breeding migration to ponds and vernal pools in the late spring. Previous experimental studies have shown that spotted salamanders appear to be resistant to Bd and Bsal infection, but the mechanisms behind Bd defense remain unknown. Spotted salamanders emerging from their overwintering habitats were hypothesized to have potent anti-Bd function expressed in their mucus and in their skin microbiomes, as a countermeasure to annual Bd re-emergence. We used non-invasive sampling at two pools during the spotted salamander annual breeding event to (I) determine pathogen prevalence, (II) quantify the antifungal potential of salamander skin mucus, and (III) characterize the diversity and composition of the salamander skin microbiome and contrast it to that of the corresponding environmental microbiome. We did not detect any Bd, Bsal, or ranavirus in the salamanders. The salamander mucus did not inhibit Bd growth in vitro, and anti-Bd bacteria were at low relative abundance in the microbiome. The salamander microbiome sourced a proportion of bacteria from the environment and appeared to select rare taxa from their respective pools; however, their functional relevance in pathogen defense is unclear. Our results suggest that the spotted salamander mucosal secretions and skin microbiome are not the mechanisms of defense against Bd. Rather, elements not captured by the mucosome (e.g., immune cell gene expression) may confer resistance. This study contributes to the understanding of salamander intraspecies variation in disease susceptibility.more » « less
-
Abstract Color polymorphic animals offer a unique system for studying intraspecific phenotypic responses to climate change. Discrete color morphs are easy to identify, and correlated trait responses of morphs can indicate how climate warming may facilitate long-term maintenance of polymorphisms. We use a historical dataset spanning 43 years to examine temporal shifts in color morph frequency and body size in response to climate in the Eastern Red-backed Salamander, Plethodon cinereus , which contains a widespread striped/unstriped color polymorphism. We created a pipeline to extract high-throughput trait data from fluid-preserved museum specimens where we batch-photographed salamanders, de-aggregated individual specimens from photographs, and solicited help of community scientists to score color morphs. We used a linear modeling framework that includes information about spatial population structure to demonstrate that color morph frequency and body size vary in response to climate, elevation, and over time, with an overall trend of higher frequency and decreased body size of the striped morph, but increased size of the unstriped morph. These surprising results suggest that morphs may be responding to multiple climate and geographic drivers through co-adapted morphological changes. This work highlights new practices of extracting trait data from museum specimens to demonstrate species phenotypes response to climate change.more » « less
-
Abstract The southern Great Plains of the USA has great potential to produce biofuel feedstock while minimizing the dual stresses of woody plant encroachment and climate change. Switchgrass (Panicum virgatum) cultivation, woody biomass captured during removal of the encroaching eastern redcedar (Juniperus virginiana) to restore grasslands and thinning of the native oak forest can provide an integrated source of feedstock and improve ecosystem services. In north‐central Oklahoma, we quantified productivity and ecosystem water use of switchgrass stands and degraded ecosystems encroached by eastern redcedar and compared these to native oak forest and tallgrass prairie ecosystems. We measured aboveground net primary productivity (ANPP) using allometric equations (trees) and clip plots (herbaceous), and evapotranspiration (ET) using a water balance approach from gauged watersheds, and calculated water use efficiency (WUE = ANPP/ET) from 2016 to 2019. Among vegetation cover types, ANPP averaged 5.1, 5.4, 6.0, and 7.8 Mg ha−1 year−1for the prairie, oak, eastern redcedar, and switchgrass watersheds and was significantly greater for switchgrass in 2018 and 2019 (2 and 3 years post establishment) when it reached 8.6 Mg ha−1 year−1. Averaged across 2017–2019, ET was significantly greater in the forested watersheds than the grassland watersheds (1022 mm year−1for eastern redcedar, 1025 mm year−1for oak, 874 mm year−1for prairie, and 828 mm year−1for switchgrass). The mean WUE was significantly greater (9.47 kg ha−1 mm−1) for switchgrass than for the prairie, eastern redcedar, and oak cover types (6.03, 6.02, and 5.31 kg ha−1 mm−1). Switchgrass offered benefits of greater ANPP, less ET, and greater WUE. Our findings indicate that an integrated biofuel feedstock system that includes converting eastern redcedar encroached areas to switchgrass and thinning the oak forest can increase productivity, increase runoff to streams, and improve ecosystem services.more » « less
An official website of the United States government

