Abstract Understanding how mixed-species forests uptake subsurface water sources is critical to projecting future forest water use and stress. Variation in root water uptake (RWU) depths and volumes is common among trees but it is unclear how it is affected by species identity, local water availability or neighboring tree species compositions. We evaluated the hypothesis that RWU depths and the age of water (i.e., time since water entered soils as precipitation) taken up by red maples (Acer rubrum) varied significantly between two forested plots, both containing red maples, similar soils, topography and hydrologic conditions, but having different neighboring tree species. We measured soil moisture contents as well as stable isotopes (δ2H, δ18O) in plant xylem water and soil moisture across two years. These data were used to calibrate process-based stand-level ecohydrological models for each plot to estimate species-level RWU depths. Model calibration suggested significant differences in red maple tree RWU depths, transpiration rates and the ages of water taken up by maples across the two stands. Maple trees growing with ash and white spruce relied on significantly deeper and older water from the soil profile than maple trees growing with birch and oak. The drought risk profile experienced by maple trees differed between the plots as demonstrated by strong correlations between precipitation and model simulated transpiration on a weekly time scale for maples taking up shallow soil moisture and a monthly time scale for maples reliant on deeper soil moisture. These findings carry significant implications for our understanding of water competition in mixed-species forests and for the representation of forest rooting strategies in hydrologic and earth systems models.
more »
« less
Assessing the influence of simulated ice storm-induced crown damage on nonstructural carbohydrates, wound closure, and radial growth of maple trees
We evaluated shoot nonstructural carbohydrate (NSC) concentrations, stem wound closure, and radial growth of sugar maple ( Acer saccharum Marsh.) and red maple ( Acer rubrum L.) trees in a novel ice storm experiment in which five storm treatments (0, 6.4, 12.7, and 19.1 mm of radial ice accretion in 1 year and 12.7 mm of ice in two consecutive years) were applied within a mature northern hardwood forest. We tested for changes in physiology at two levels: (1) associated with plot-level ice treatments and (2) with crown damage classes of individual trees. Few differences in NSC or wound closure associated with treatment were found. Growth decreased for red maple in the medium and high treatments and sugar maple in the high treatment but no other treatments. Changes in physiology were more evident when assessed using crown damage classes. Two NSC components were elevated in sugar and red maples with high (≥50%) crown damage. Wound closure was less for red maples with high damage, and separation among damage classes was even greater for sugar maple. Red maples with moderate (<50%) and high crown damage showed gradually declining growth, whereas sugar maples with high damage showed ∼80% reduction in growth the first year after injury.
more »
« less
- PAR ID:
- 10573327
- Publisher / Repository:
- Canadian Science Publishing
- Date Published:
- Journal Name:
- Canadian Journal of Forest Research
- Volume:
- 54
- Issue:
- 5
- ISSN:
- 0045-5067
- Page Range / eLocation ID:
- 512 to 523
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Foliar chemistry values were obtained from two important native tree species (white oak (Quercus alba L.) and red maple (Acer rubrum L.)) across urban and reference forest sites of three major cities in the eastern United States during summer 2015 (New York, NY (NYC); Philadelphia, PA; and Baltimore, MD). Trees were selected from secondary growth oak-hickory forests found in New York, NY; Philadelphia, PA; and Baltimore, MD, as well as at reference forest sites outside each metropolitan area. In all three metropolitan areas, urban forest patches and references forest sites were selected based on the presence of red maple and white oak canopy dominant trees in patches of at least 1.5 hectares with slopes less than 25%, and well-drained soils of similar soil series within each metropolitan area. Within each city, several forest patches were selected to capture the variation in forest patch site conditions across an individual city. All reference sites were located in protected areas outside of the city and within intermix wildland-urban interface landscapes, in order to target similar contexts of surrounding land use and population density (Martinuzzi et al. 2015). Several reference sites were selected for each city, located within the same protected area considered representative of rural forests of the region. White oaks were at least 38.1 cm diameter at breast height (DBH), red maples were at least 25.4 cm DBH, and all trees were dominant or co-dominant canopy trees. The trees had no major trunk cavities and had crown vigor scores of 1 or 2 (less than 25% overall canopy damage; Pontius & Hallett 2014). From early July to early August 2015, sun leaves were collected from the periphery of the crown of each tree with either a shotgun or slingshot for subsequent analysis to determine differences in foliar chemistry across cities and urban vs. reference forest site types. The data were used to invstigate whether differences in native tree physiology occur between urban and reference forest patches, and whether those differences are site- and species-specific. A complete analysis of these data can be found in: Sonti, NF. 2019. Ecophysiological and social functions of urban forest patches. Ph.D. dissertation. University of Maryland, College Park, MD. 166 p. References: Martinuzzi S, Stewart SI, Helmers DP, Mockrin MH, Hammer RB, Radeloff VC. 2015. The 2010 wildland-urban interface of the conterminous United States. Research Map NRS-8. US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA. Pontius J, Hallett R. 2014. Comprehensive methods for earlier detection and monitoring of forest decline. Forest Science 60(6): 1156-1163.more » « less
-
Coarse Woody Debris of the Ice Storm Experiment (ISE) plots at the Hubbard Brook Experimental ForestThe ice storm experiment was a novel experimental approach creating a suite of ice storms in a mature hardwood forest in New Hampshire, USA. The experiment included five ice storm intensities (0, 6.4, 12.7, and 19.1 mm radial ice accretion) applied in a single year, and one ice storm intensity (12.7 mm) applied in two consecutive years. This dataset quantifies the coarse woody debris transferred from the forest canopy to the soil under the different icing conditions. In this forest, little damage occurred below 6.4 mm radial ice accretion, moderate damage occurred with up to 12.7 mm of accretion, and significant branch breakage and canopy damage occurred with 19.1 mm of ice. The icing in consecutive years demonstrated an interactive effect of ice storm frequency and severity such that some branches damaged in the first year of icing appeared to remain in the canopy and then fall to the ground in the second year of icing. These results have implications for National Weather Service ice storm warning levels, and they provide a quantitative assessment of ice-load related inputs of forest debris that will be useful to municipalities creating response plans for current and future ice storms. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
-
Abstract An ice storm simulation was performed at the Hubbard Brook Experimental Forest to evaluate impacts of these extreme weather events on northern hardwood forests. Water was pumped from the main branch of Hubbard Brook and sprayed above the forest canopy in subfreezing conditions so that it rained down and froze on contact with trees. The experiment consisted of five treatments, including a control (no ice) and three target levels of radial ice accretion: low (6.4 mm), mid (12.7 mm), and high (19.0 mm). Two of the mid-level treatment plots (midx2) were iced in back-to-back years to evaluate impacts of consecutive storms. This dataset consists of hemispherical photographs of the forest canopy with leaves on and off the trees before and after the various ice treatments. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
-
Sugar maple (Acer saccharum Marsh.) sap sweetness and elemental concentrations, foliar gas exchange, and foliar elemental concentrations were measured in 2013 in Bartlett Experimental Forest stands C6, C8, and C9 and Jeffers Brook stands JBM and JBO. In February and March 2013, sugar maples were sampled for sap sweetness and elemental concentrations of potassium (K), aluminum (Al), calcium (Ca), magnesium (Mg), manganese (Mn), phosphorus (P), and strontium (Sr). In July 2013, leaves from four sugar maple trees per plot, representing the two highest and lowest sap sugar concentrations, were sampled for foliar gas exchange and foliar elemental analyses of Ca, K, Mn, P, nitrogen (N), and silicon (Si). Additional detail on the MELNHE project, including a datatable of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=344 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
An official website of the United States government

