Abstract: Aim In this study, we present the results of a project which used Landsat Collection 2 Surface Reflectance data and European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) data to develop a machine learning model to estimate Secchi depth in Lake Yojoa, Honduras. Methods Satellite remote sensing data obtained within a 7-day window of an in situ measurement were matched with in situ Secchi depth measurements and were partitioned into train-test-validate data sets for model development. Results The machine learning model had good (R2= 0.57) agreement and reasonable uncertainty (MAE = 0.58 m) between remotely estimated and in situ observed Secchi depth. Application of the machine learning model increased the monitoring record of Lake Yojoa from 6 years of measured data to a 23-year record. Conclusions This model demonstrates the utility of coordinating in situ sampling schedules of short-term research projects with satellite imagery acquisition schedules in order to increase the temporal coverage of remote sensing derived estimates of water quality in understudied lakes.
more »
« less
A database of in situ water temperatures for large inland lakes across the coterminous United States
Abstract Water temperature dynamics in large inland lakes are interrelated with internal lake physics, ecosystem function, and adjacent land surface meteorology and climatology. Models for simulating and forecasting lake temperatures often rely on remote sensing andin situdata for validation.In situmonitoring platforms have the benefit of providing relatively precise measurements at multiple lake depths, but are often sparser (temporally and spatially) than remote sensing data. Here, we address the challenge of synthesizingin situlake temperature data by creating a standardized database of near-surface and subsurface measurements from 134 sites across 29 large North American lakes, with the primary goal of supporting an ongoing lake model validation study. We utilize data sources ranging from federal agency repositories to local monitoring group samples, with a collective historical record spanning January 1, 2000 through December 31, 2022. Our database has direct utility for validating simulations and forecasts from operational numerical weather prediction systems in large lakes whose extensive surface area may significantly influence nearby weather and climate patterns.
more »
« less
- Award ID(s):
- 2025982
- PAR ID:
- 10573346
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Scientific Data
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2052-4463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Lake surface conditions are critical for representing lake‐atmosphere interactions in numerical weather prediction. The Community Land Model's 1‐D lake component (CLM‐lake) is part of NOAA's High‐Resolution Rapid Refresh (HRRR) 3‐km weather/earth‐system model, which assumes that virtually all the two thousand lakes represented in CONUS have distinct (for each lake) but spatially uniform depth. To test the sensitivity of CLM‐lake to bathymetry, we ran CLM‐lake as a stand‐alone model for all of 2019 with two bathymetry data sets for 23 selected lakes: the first had default (uniform within each lake) bathymetry while the second used a new, spatially varying bathymetry. We validated simulated lake surface temperature (LST) with both remote and in situ observations to evaluate the skill of both runs and also intercompared modeled ice cover and evaporation. Though model skill varied considerably from lake to lake, using the new bathymetry resulted in marginal improvement over the default. The more important finding is the influence bathymetry has on modeled LST (i.e., differences between model simulations) where lake‐wide LST deviated as much as 10°C between simulations and individual grid cells experienced even greater departures. This demonstrates the sensitivity of surface conditions in atmospheric models to lake bathymetry. The new bathymetry also improved lake depths over the (often too deep) previous value assumed for unknown‐depth lakes. These results have significant implications for numerical weather prediction, especially in regions near large lakes where lake surface conditions often influence the state of the atmosphere via thermal regulation and lake effect precipitation.more » « less
-
Abstract The rate of technological innovation within aquatic sciences outpaces the collective ability of individual scientists within the field to make appropriate use of those technologies. The process of in situ lake sampling remains the primary choice to comprehensively understand an aquatic ecosystem at local scales; however, the impact of climate change on lakes necessitates the rapid advancement of understanding and the incorporation of lakes on both landscape and global scales. Three fields driving innovation within winter limnology that we address here are autonomous real‐time in situ monitoring, remote sensing, and modeling. The recent progress in low‐power in situ sensing and data telemetry allows continuous tracing of under‐ice processes in selected lakes as well as the development of global lake observational networks. Remote sensing offers consistent monitoring of numerous systems, allowing limnologists to ask certain questions across large scales. Models are advancing and historically come in different types (process‐based or statistical data‐driven), with the recent technological advancements and integration of machine learning and hybrid process‐based/statistical models. Lake ice modeling enhances our understanding of lake dynamics and allows for projections under future climate warming scenarios. To encourage the merging of technological innovation within limnological research of the less‐studied winter period, we have accumulated both essential details on the history and uses of contemporary sampling, remote sensing, and modeling techniques. We crafted 100 questions in the field of winter limnology that aim to facilitate the cross‐pollination of intensive and extensive modes of study to broaden knowledge of the winter period.more » « less
-
Abstract Ice cover plays a critical role in physical, biogeochemical, and ecological processes in lakes. Despite its importance, winter limnology remains relatively understudied. Here, we provide a primer on the predominant drivers of freshwater lake ice cover and the current methodologies used to study lake ice, including in situ and remote sensing observations, physical based models, and experiments. We highlight opportunities for future research by integrating these four disciplines to address key knowledge gaps in our understanding of lake ice dynamics in changing winters. Advances in technology, data integration, and interdisciplinary collaboration will allow the field to move toward developing global forecasts of lake ice cover for small to large lakes across broad spatial and temporal scales, quantifying ice quality and ice thickness, moving from binary to continuous ice records, and determining how winter ice conditions and quality impact ecosystem processes in lakes over winter. Ultimately, integrating disciplines will improve our ability to understand the impacts of changing winters on lake ice.more » « less
-
Abstract The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount ofin situdata to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophylla, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA thede-factostate of knowledge ofin situcoastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring.more » « less
An official website of the United States government

