skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Planktonic functional diversity changes in synchrony with lake ecosystem state
Abstract Managing ecosystems to effectively preserve function and services requires reliable tools that can infer changes in the stability and dynamics of a system. Conceptually, functional diversity (FD) appears as a sensitive and viable monitoring metric stemming from suggestions that FD is a universally important measure of biodiversity and has a mechanistic influence on ecological processes. It is however unclear whether changes in FD consistently occur prior to state responses or vice versa, with no current work on the temporal relationship between FD and state to support a transition towards trait‐based indicators. There is consequently a knowledge gap regarding when functioning changes relative to biodiversity change and where FD change falls in that sequence. We therefore examine the lagged relationship between planktonic FD and abundance‐based metrics of system state (e.g. biomass) across five highly monitored lake communities using both correlation and cutting edge non‐linear empirical dynamic modelling approaches. Overall, phytoplankton and zooplankton FD display synchrony with lake state but each lake is idiosyncratic in the strength of relationship. It is therefore unlikely that changes in plankton FD are identifiable before changes in more easily collected abundance metrics. These results highlight the power of empirical dynamic modelling in disentangling time lagged relationships in complex multivariate ecosystems, but suggest that FD cannot be generically viable as an early indicator. Individual lakes therefore require consideration of their specific context and any interpretation of FD across systems requires caution. However, FD still retains value as an alternative state measure or a trait representation of biodiversity when considered at the system level.  more » « less
Award ID(s):
2025982
PAR ID:
10573349
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Global Change Biology
Volume:
29
Issue:
3
ISSN:
1354-1013
Page Range / eLocation ID:
686 to 701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract To advance understanding of biodiversity and ecosystem function, ecologists seek widely applicable relationships among species diversity and other ecosystem characteristics such as species productivity, biomass, and abundance. These metrics vary widely across ecosystems and no relationship among any combination of them that is valid across habitats, taxa, and spatial scales, has heretofore been found. Here we derive such a relationship, an equation of state, among species richness, energy flow, biomass, and abundance by combining results from the Maximum Entropy Theory of Ecology and the Metabolic Theory of Ecology. It accurately captures the relationship among these state variables in 42 data sets, including vegetation and arthropod communities, that span a wide variety of spatial scales and habitats. The success of our ecological equation of state opens opportunities for estimating difficult-to-measure state variables from measurements of others, adds support for two current theories in ecology, and is a step toward unification in ecology. 
    more » « less
  2. BackgroundForecasting the responses of natural populations to environmental change is a key priority in the management of ecological systems. This is challenging because the dynamics of multi-species ecological communities are influenced by many factors. Populations can exhibit complex, nonlinear responses to environmental change, often over multiple temporal lags. In addition, biotic interactions, and other sources of multi-species dependence, are major contributors to patterns of population variation. Theory suggests that near-term ecological forecasts of population abundances can be improved by modelling these dependencies, but empirical support for this idea is lacking. MethodsWe test whether models that learn from multiple species, both to estimate nonlinear environmental effects and temporal interactions, improve ecological forecasts compared to simpler single species models for a semi-arid rodent community. Using dynamic generalized additive models, we analyze time series of monthly captures for nine rodent species over 25 years. ResultsModel comparisons provide strong evidence that multi-species dependencies improve both hindcast and forecast performance, as models that captured these effects gave superior predictions than models that ignored them. We show that changes in abundance for some species can have delayed, nonlinear effects on others, and that lagged, nonlinear effects of temperature and vegetation greenness are key drivers of changes in abundance for this system. ConclusionsOur findings highlight that multivariate models are useful not only to improve near-term ecological forecasts but also to ask targeted questions about ecological interactions and drivers of change. This study emphasizes the importance of jointly modelling species’ shared responses to the environment and their delayed temporal interactions when teasing apart community dynamics. 
    more » « less
  3. Coral reefs experience numerous natural and anthropogenic environmental gradients that alter biophysical conditions and affect biodiversity. While many studies have focused on drivers of reef biodiversity using traditional diversity metrics (e.g., species richness, diversity, evenness), less is known about how environmental variability may influence functional diversity. In this study, we tested the impact of submarine groundwater discharge (SGD) on taxonomic and functional diversity metrics in Mo‘orea, French Polynesia. SGD is the expulsion of terrestrial fresh or recirculated seawater into marine environments and is associated with reduced temperatures, pH, and salinity and elevated nutrient levels. Using a regression approach along the SGD gradient, we found that taxon and functional-entity richness displayed unimodal relationships to SGD parameters, primarily nitrate + nitrite and phosphate variability, with peak richness at moderate SGD for stony coral and the full benthic community. Macroalgae showed this unimodal pattern for functional-entity but not taxonomic richness. Functional community composition (presence and abundance of functional entities) increased along the gradient, while taxonomic composition showed a nonlinear relationship to SGD-related parameters. SGD is a common feature of many coastal ecosystems globally and therefore may be more important to structuring benthic functional diversity than previously thought. Further, studying community shifts through a functional-trait lens may provide important insights into the roles of community functions on ecosystem processes and stability, leading to improved management strategies. 
    more » « less
  4. Abstract Aquatic ecosystems - lakes, ponds and streams - are hotspots of biodiversity in the cold and arid environment of Continental Antarctica. Environmental change is expected to increasingly alter Antarctic aquatic ecosystems and modify the physical characteristics and interactions within the habitats that they support. Here, we describe physical and biological features of the peripheral ‘moat’ of a closed-basin Antarctic lake. These moats mediate connectivity amongst streams, lake and soils. We highlight the cyclical moat transition from a frozen winter state to an active open-water summer system, through refreeze as winter returns. Summer melting begins at the lakebed, initially creating an ice-constrained lens of liquid water in November, which swiftly progresses upwards, creating open water in December. Conversely, freezing progresses slowly from the water surface downwards, with water at 1 m bottom depth remaining liquid until May. Moats support productive, diverse benthic communities that are taxonomically distinct from those under the adjacent permanent lake ice. We show how ion ratios suggest that summer exchange occurs amongst moats, streams, soils and sub-ice lake water, perhaps facilitated by within-moat density-driven convection. Moats occupy a small but dynamic area of lake habitat, are disproportionately affected by recent lake-level rises and may thus be particularly vulnerable to hydrological change. 
    more » « less
  5. Ecosystem models need to capture biodiversity, because it is a fundamental determinant of food web dynamics and consequently of the cycling of energy and matter in ecosystems. In oceanic food webs, the plankton compartment encompasses by far most of the biomass and diversity. Therefore, capturing plankton diversity is paramount for marine ecosystem modelling. In recent years, many models have been developed, each representing different aspects of plankton diversity, but a systematic comparison remains lacking. Here we present established modelling approaches to study plankton ecology and diversity, discussing the limitations and strengths of each approach. We emphasize their different spatial and temporal resolutions and consider the potential of these approaches as tools to address societal challenges. Finally, we make suggestions as to how better integration of field and experimental data with modelling could advance understanding of both plankton biodiversity specifically and more broadly the response of marine ecosystems to environmental change, including climate change. 
    more » « less