skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Expected 1.x Makespan-Optimal Multi-Agent Path Finding on Grid Graphs in Low Polynomial Time
Multi-Agent Path Finding (MAPF) is NP-hard to solve optimally, even on graphs, suggesting no polynomial-time algorithms can compute exact optimal solutions for them. This raises a natural question: How optimal can polynomial-time algorithms reach? Whereas algorithms for computing constant-factor optimal solutions have been developed, the constant factor is generally very large, limiting their application potential. In this work, among other breakthroughs, we propose the first low-polynomial-time MAPF algorithms delivering 1-1.5 (resp., 1-1.67) asymptotic makespan optimality guarantees for 2D (resp., 3D) grids for random instances at a very high 1/3 agent density, with high probability. Moreover, when regularly distributed obstacles are introduced, our methods experience no performance degradation. These methods generalize to support 100% agent density.Regardless of the dimensionality and density, our high-quality methods are enabled by a unique hierarchical integration of two key building blocks. At the higher level, we apply the labeled Grid Rearrangement Algorithm (GRA), capable of performing efficient reconfiguration on grids through row/column shuffles. At the lower level, we devise novel methods that efficiently simulate row/column shuffles returned by GRA. Our implementations of GRA-based algorithms are highly effective in extensive numerical evaluations, demonstrating excellent scalability compared to other SOTA methods. For example, in 3D settings, GRA-based algorithms readily scale to grids with over 370,000 vertices and over 120,000 agents and consistently achieve conservative makespan optimality approaching 1.5, as predicted by our theoretical analysis.  more » « less
Award ID(s):
1845888 2132972 2309866
PAR ID:
10573391
Author(s) / Creator(s):
;
Publisher / Repository:
JAIR
Date Published:
Journal Name:
Journal of Artificial Intelligence Research
Volume:
81
ISSN:
1076-9757
Page Range / eLocation ID:
443 to 479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fast algorithms for optimal multi-robot path planning are sought after in real-world applications. Known methods, however, generally do not simultaneously guar- antee good solution optimality and good (e.g., polynomial) running time. In this work, we develop a first low-polynomial running time algorithm, called SplitAndGroup (SaG), that solves the multi-robot path planning problem on grids and grid-like environments, and produces constant factor makespan optimal solutions on average over all problem in- stances. That is, SaG is an average case O(1)-approximation algorithm and computes solutions with sub-linear makespan. SaG is capable of handling cases when the density of robots is extremely high - in a graph-theoretic setting, the al- gorithm supports cases where all vertices of the underly- ing graph are occupied. SaG attains its desirable proper- ties through a careful combination of a novel divide-and- conquer technique, which we denote as global decoupling, and network flow based methods for routing the robots. Solutions from SaG, in a weaker sense, are also a constant factor approximation on total distance optimality. 
    more » « less
  2. Fast algorithms for optimal multi-robot path planning are sought after in both research and real-world applications. Known methods, however, generally do not simultaneously guarantee good solution optimality and fast run time for difficult instances. In this work, we develop a low-polynomial running time algorithm, called SplitAndGroup, that solves the multi-robot path planning problem on grids and grid-like environments, and produces constant factor time- and distance-optimal solutions, in expectation. In particular, SplitAndGroup computes solutions with sub-linear makespan. SplitAndGroup is capable of handling cases when the density of robot is extremely high - in a graph-theoretic setting, the algorithm supports cases where all vertices of the underlying graph are occupied by robots. SplitAndGroup attains its desirable properties through a careful combination of divide-and-conquer technique and network flow based methods for routing the robots. 
    more » « less
  3. We study the labeled multi-robot path planning problem in continuous 2D and 3D domains in the absence of obstacles where robots must not collide with each other. For an arbitrary number of robots in arbitrary initial and goal arrangements, we derive a polynomial time, complete algorithm that produces solutions with constant-factor optimality guarantees on both makespan and distance optimality, in expectation, under the assumption that the robot labels are uniformly randomly distributed. Our algorithm only requires a small constant-factor expansion of the initial and goal configuration footprints for solving the problem, i.e., the problem can be solved in a fairly small bounded region. Beside theoretical guarantees, we present a thorough computational evaluation of the proposed solution. In addition to the baseline implementation, adapting an effective (but non-polynomial time) routing subroutine, we also provide a highly efficient implementation that quickly computes near-optimal solutions. Hardware experiments on the microMVP platform composed of non-holonomic robots confirms the practical applicability of our algorithmic pipeline. 
    more » « less
  4. In the 15-puzzle game, 15 labeled square tiles are reconfigured on a 4 × 4 board through an escort, wherein each (time) step, a single tile neighboring it may slide into it, leaving the space previously occupied by the tile as the new escort. We study a generalized sliding-tile puzzle (GSTP) in which (1) there are 1+ escorts and (2) multiple tiles can move synchronously in a single time step. Compared with popular discrete multi-agent/robot motion models, GSTP provides a more accurate model for a broad array of high-utility applications, including warehouse automation and autonomous garage parking, but is less studied due to the more involved tile interactions. In this work, we analyze optimal GSTP solution structures, establishing that computing makespan optimal solutions for GSTP is NP-complete and developing polynomial time algorithms yielding makespans approximating the minimum with expected/high probability constant factors, assuming randomized start and goal configurations. 
    more » « less
  5. Multi-Agent Path Finding (MAPF) is the problem of moving multiple agents from starts to goals without collisions. Lifelong MAPF (LMAPF) extends MAPF by continuously assigning new goals to agents. We present our winning approach to the 2023 League of Robot Runners LMAPF competition, which leads us to several interesting research challenges and future directions. In this paper, we outline three main research challenges. The first challenge is to search for high-quality LMAPF solutions within a limited planning time (e.g., 1s per step) for a large number of agents (e.g., 10,000) or extremely high agent density (e.g., 97.7%). We present future directions such as developing more competitive rule-based and anytime MAPF algorithms and parallelizing state-of-the-art MAPF algorithms. The second challenge is to alleviate congestion and the effect of myopic behaviors in LMAPF algorithms. We present future directions, such as developing moving guidance and traffic rules to reduce congestion, incorporating future prediction and real-time search, and determining the optimal agent number. The third challenge is to bridge the gaps between the LMAPF models used in the literature and real-world applications. We present future directions, such as dealing with more realistic kinodynamic models, execution uncertainty, and evolving systems. 
    more » « less