skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constitutive neural networks for main pulmonary arteries: discovering the undiscovered
Abstract Accurate modeling of cardiovascular tissues is crucial for understanding and predicting their behavior in various physiological and pathological conditions. In this study, we specifically focus on the pulmonary artery in the context of the Ross procedure, using neural networks to discover the most suitable material model. The Ross procedure is a complex cardiac surgery where the patient’s own pulmonary valve is used to replace the diseased aortic valve. Ensuring the successful long-term outcomes of this intervention requires a detailed understanding of the mechanical properties of pulmonary tissue. Constitutive artificial neural networks offer a novel approach to capture such complex stress–strain relationships. Here, we design and train different constitutive neural networks to characterize the hyperelastic, anisotropic behavior of the main pulmonary artery. Informed by experimental biaxial testing data under various axial-circumferential loading ratios, these networks autonomously discover the inherent material behavior, without the limitations of predefined mathematical models. We regularize the model discovery using cross-sample feature selection and explore its sensitivity to the collagen fiber distribution. Strikingly, we uniformly discover an isotropic exponential first-invariant term and an anisotropic quadratic fifth-invariant term. We show that constitutive models with both these terms can reliably predict arterial responses under diverse loading conditions. Our results provide crucial improvements in experimental data agreement, and enhance our understanding into the biomechanical properties of pulmonary tissue. The model outcomes can be used in a variety of computational frameworks of autograft adaptation, ultimately improving the surgical outcomes after the Ross procedure.  more » « less
Award ID(s):
2320933
PAR ID:
10573409
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Biomechanics and Modeling in Mechanobiology
Volume:
24
Issue:
2
ISSN:
1617-7959
Format(s):
Medium: X Size: p. 615-634
Size(s):
p. 615-634
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Finding the stiffness map of biological tissues is of great importance in evaluating their healthy or pathological conditions. However, due to the heterogeneity and anisotropy of biological fibrous tissues, this task presents challenges and significant uncertainty when characterized only by single-mode loading experiments. In this study, we propose a new theoretical framework to map the stiffness landscape of fibrous tissues, specifically focusing on brain white matter tissue. Initially, a finite element (FE) model of the fibrous tissue was subjected to six loading cases, and their corresponding stress–strain curves were characterized. By employing multiobjective optimization, the material constants of an equivalent anisotropic material model were inversely extracted to best fit all six loading modes simultaneously. Subsequently, large-scale FE simulations were conducted, incorporating various fiber volume fractions and orientations, to train a convolutional neural network capable of predicting the equivalent anisotropic material properties solely based on the fibrous architecture of any given tissue. The proposed method, leveraging brain fiber tractography, was applied to a localized volume of white matter, demonstrating its effectiveness in precisely mapping the anisotropic behavior of fibrous tissue. In the long-term, the proposed method may find applications in traumatic brain injury, brain folding studies, and neurodegenerative diseases, where accurately capturing the material behavior of the tissue is crucial for simulations and experiments. 
    more » « less
  2. Abstract We present a data-driven workflow to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios, without postulating a specific constitutive model form nor possessing knowledge of the material microstructure. To this end, a material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve anterior leaflet, with which we build a neural operator learning model. The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material microstructure properties learned implicitly from the data and naturally embedded in the network parameters. Using various combinations of loading protocols, we compare the predictivity of this framework with finite element analysis based on three conventional constitutive models. From in-distribution tests, the predictivity of our approach presents good generalizability to different loading conditions and outperforms the conventional constitutive modeling at approximately one order of magnitude. When tested on out-of-distribution loading ratios, the neural operator learning approach becomes less effective. To improve the generalizability of our framework, we propose a physics-guided neural operator learning model via imposing partial physics knowledge. This method is shown to improve the model's extrapolative performance in the small-deformation regime. Our results demonstrate that with sufficient data coverage and/or guidance from partial physics constraints, the data-driven approach can be a more effective method for modeling biological materials than the traditional constitutive modeling. 
    more » « less
  3. BackgroundCongenital heart defects affect approximately 1% of births in the United States and Europe, with >1 million children in the United States living with congenital heart defects. Many experience abnormalities in the right ventricular outflow tract, often necessitating surgical intervention early in life. However, the initial repairs typically are temporary solutions as many patients will eventually need pulmonary valve replacement to address pulmonary valve regurgitation and prevent right ventricle failure. Addressing progressive pulmonary valve regurgitation, ideally in patients weighing 8 to 10 kg, is critical to prevent right ventricle dysfunction. Transcatheter pulmonary valve replacement currently treats patients weighing at least 20 kg. Unfortunately, smaller children must wait for valve replacement and risk right ventricular dilation. MethodsTo address this challenge, we have developed the IRIS Valve, a growth‐accommodating transcatheter pulmonary heart valve inspired by origami targeting implantation in at least 8 kg children. The valve stent underwent finite element analysis with validation by fracture testing. Using a 12‐Fr transcatheter system, the IRIS valve was implanted into 8 to 17 kg Yucatan mini pigs for 6 months. ResultsBenchtop fracture testing and finite element analysis confirmed the stent's ability to be crimped to a 3‐mm diameter for loading into a 12‐Fr transcatheter system and expanded to 20 mm without fracture. Animal studies successfully demonstrated excellent integration within the pulmonary valve annulus, intact valve integrity, and favorable tissue response. ConclusionsThe IRIS Valve offers a promising solution for earlier treatment of heart valve disease in pediatric patients with congenital heart defects, potentially improving outcomes in this vulnerable population. 
    more » « less
  4. Abstract Traumatic brain injury (TBI), particularly from explosive blasts, is a major cause of casualties in modern military conflicts. Computational models are an important tool in understanding the underlying biomechanics of TBI but are highly dependent on the mechanical properties of soft tissue to produce accurate results. Reported material properties of brain tissue can vary by several orders of magnitude between studies, and no published set of material parameters exists for porcine brain tissue at strain rates relevant to blast. In this work, brain tissue from the brainstem, cerebellum, and cerebrum of freshly euthanized adolescent male Göttingen minipigs was tested in simple shear and unconfined compression at strain rates ranging from quasi-static (QS) to 300 s−1. Brain tissue showed significant strain rate stiffening in both shear and compression. Minimal differences were seen between different regions of the brain. Both hyperelastic and hyper-viscoelastic constitutive models were fit to experimental stress, considering data from either a single loading mode (unidirectional) or two loading modes together (bidirectional). The unidirectional hyper-viscoelastic models with an Ogden hyperelastic representation and a one-term Prony series best captured the response of brain tissue in all regions and rates. The bidirectional models were generally able to capture the response of the tissue in high-rate shear and all compression modes, but not the QS shear. Our constitutive models describe the first set of material parameters for porcine brain tissue relevant to loading modes and rates seen in blast injury. 
    more » « less
  5. The ability to concisely describe the dynamical behavior of soft materials through closed-form constitutive relations holds the key to accelerated and informed design of materials and processes. The conventional approach is to construct constitutive relations through simplifying assumptions and approximating the time- and rate-dependent stress response of a complex fluid to an imposed deformation. While traditional frameworks have been foundational to our current understanding of soft materials, they often face a twofold existential limitation: i) Constructed on ideal and generalized assumptions, precise recovery of material-specific details is usually serendipitous, if possible, and ii) inherent biases that are involved by making those assumptions commonly come at the cost of new physical insight. This work introduces an approach by leveraging recent advances in scientific machine learning methodologies to discover the governing constitutive equation from experimental data for complex fluids. Our rheology-informed neural network framework is found capable of learning the hidden rheology of a complex fluid through a limited number of experiments. This is followed by construction of an unbiased material-specific constitutive relation that accurately describes a wide range of bulk dynamical behavior of the material. While extremely efficient in closed-form model discovery for a real-world complex system, the model also provides insight into the underpinning physics of the material. 
    more » « less