skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Midrange Estimation for Sensor Fusion
A nonlinear estimation technique is proposed to combine a precise but inaccurate sensor with an accurate but imprecise one in such a manner that their fusion enables both precise and accurate measurement of a physical quantity. This estimation technique solely relies on certain bounds on the measurement noise, rather than a detailed statistical description of the noise and the measured quantity. The estimation strategy is to estimate the slowly-varying offset of the inaccurate sensor based on a dynamic model for its temporal evolution, and the observations of the imprecise sensor. This measurement offset is estimated by recursively generating some tight upper and lower bounds for it, and then, taking the midpoint of these~bounds as its midrange estimation. This estimation technique is verified effective both analytically and by Monte Carlo simulations.  more » « less
Award ID(s):
1941944
PAR ID:
10573557
Author(s) / Creator(s):
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-8265-5
Page Range / eLocation ID:
2464 to 2469
Format(s):
Medium: X
Location:
Toronto, ON, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose an improved keypoint approach for 6-DoF grasp pose synthesis from RGB-D input. Keypoint-based grasp detection from image input demonstrated promising results in a previous study, where the visual information provided by color imagery compensates for noisy or imprecise depth measurements. However, it relies heavily on accurate keypoint prediction in image space. We devise a new grasp generation network that reduces the dependency on precise keypoint estimation. Given an RGB-D input, the network estimates both the grasp pose and the camera-grasp length scale. Re-design of the keypoint output space mitigates the impact of keypoint prediction noise on Perspective-n-Point (PnP) algorithm solutions. Experiments show that the proposed method outperforms the baseline by a large margin, validating its design. Though trained only on simple synthetic objects, our method demonstrates sim-to-real capacity through competitive results in real-world robot experiments. 
    more » « less
  2. Dead reckoning is a promising yet often overlooked smartphone-based indoor localization technology that relies on phone-mounted sensors for counting steps and estimating walking directions, without the need for extensive sensor or landmark deployment. However, misalignment between the phone’s direction and the user’s actual movement direction can lead to unreliable direction estimates and inaccurate location tracking. To address this issue, this paper introduces SWiLoc (Smartphone and WiFi-based Localization), an enhanced direction correction system that integrates passive WiFi sensing with smartphone-based sensing to form Correction Zones. Our two-phase approach accurately measures the user’s walking directions when passing through a Correction Zone and further refines successive direction estimates outside the zones, enabling continuous and reliable tracking. In addition to direction correction, SWiLoc extends its capabilities by incorporating a localization technique that leverages corrected directions to achieve precise user localization. This extension significantly enhances the system’s applicability for high-accuracy localization tasks. Additionally, our innovative Fresnel zone-based approach, which utilizes unique hardware configurations and a fundamental geometric model, ensures accurate and robust direction estimation, even in scenarios with unreliable walking directions. We evaluate SWiLoc across two real-world environments, assessing its performance under varying conditions such as environmental changes, phone orientations, walking directions, and distances. Our comprehensive experiments demonstrate that SWiLoc achieves an average 75th percentile error of 8.89 degrees in walking direction estimation and an 80th percentile error of 1.12 m in location estimation. These figures represent reductions of 64% and 49%, respectively for direction and location estimation error, over existing state-of-the-art approaches. 
    more » « less
  3. Motivated by real-world applications with intermittent sensor data, an extended Kalman filter is formulated as a hybrid system and constructive conditions on its parameters guaranteeing an asymptotic stability property are provided. The dynamical properties of the estimation error are first characterized infinitesimally so to yield bounds on the rate of convergence and overshoot that depend on the parameters. By recasting the problem as the stabilization of a compact set, robustness properties of the proposed algorithm in the presence of disturbances in the system dynamics as well as measurement noise in the output are established. The proposed strategy is applied to spacecraft relative motion control with position-only measurements. 
    more » « less
  4. This paper introduces a learning-based optimal control strategy enhanced with nonmodel-based state estimation to manage the complexities of lane-changing maneuvers in autonomous vehicles. Traditional approaches often depend on comprehensive system state information, which may not always be accessible or accurate due to dynamic traffic environments and sensor limitations. Our methodology dynamically adapts to these uncertainties and sensor noise by iteratively refining its control policy based on real-time sensor data and reconstructed states. We implemented an experimental setup featuring a scaled vehicle equipped with GPS, IMUs, and cameras, all processed through an Nvidia Jetson AGX Xavier board. This approach is pivotal as it addresses the limitations of simulations, which often fail to capture the complexity of dynamic real-world conditions. The results from real-world experiments demonstrate that our learning-based control system achieves smoother and more consistent lane-changing behavior compared to traditional direct measurement approaches. This paper underscores the effectiveness of integrating Adaptive Dynamic Programming (ADP) with state estimation techniques, as demonstrated through small-scale experiments. These experiments are crucial as they provide a practical validation platform that simulates real-world complexities, representing a significant advancement in the control systems used for autonomous driving. 
    more » « less
  5. As the use of electrochemical batteries, especially lithium–ion (Li-Ion) batteries, increases due to emerging applications and expanding markets, the accurate and fast estimation of their state of health (SOH) is becoming increasingly important. The accuracy of the SOH estimation is highly dependent on the correlation strength between the used indicator and SOH and the accuracy of the SOH indicator measurement. This paper presents a new differential indicator which has a strong and consistent correlation with the SOH of Li-Ion batteries, based on a new Electrochemical Impedance Spectrum (EIS) Phase–Magnitude relationship. It is shown in this paper that the EIS Phase–Magnitude relationship exhibits a phase-based differential impedance magnitude SOH indicator between a first-phase peak point and a last-phase valley point. Because of the differential nature of this SOH indicator and because the two impedance values are measured at a phase peak point and a valley phase point regardless of the phase absolute values, the effect of impedance measurement shift/offset (error) on SOH estimation is reduced. This supports the future development of more accurate and faster online and offline SOH estimation algorithms and systems that have a higher immunity to impedance measurement shift/offset (error). Furthermore, in this work, the EIS was measured for a lithium–ion battery that was down to a ~15% SOH, which was not only used to support the conclusions of this paper, but also helped in filling a gap in the literature for EIS data under deep/high degradation levels. 
    more » « less