With rising global temperatures, urban environments are increasingly vulnerable to heat stress, often exacerbated by the Urban Heat Island (UHI) effect. While most UHI research has focused on large metropolitan areas around the world, relatively smaller-sized cities (with a population 100 000–300 000) remain understudied despite their growing exposure to extreme heat and meteorological significance. In particular, urban heat advection (UHA), the transport of heat by mean winds, remains a key but underexplored mechanism in most modeling frameworks. High-resolution numerical weather prediction (NWP) models are essential tools for simulating urban hydrometeorological conditions, yet most prior evaluations have focused on retrospective reanalysis products rather than forecasts. In this study, we assess the performance of a widely used operational weather forecast model, the High-Resolution Rapid Refresh (HRRR), as a representative example of current NWP systems. We investigate its ability to predict spatial and temporal patterns of urban heat and UHA within and around Lubbock, Texas, a small-sized city located in a semi-arid environment in the southwestern US. Using data collected between 1 September 2023, and 31 August 2024 from the Urban Heat Island Experiment in Lubbock, Texas (U-HEAT) network and five West Texas Mesonet stations, we compare 18 h forecasts against in situ observations. HRRR forecasts exhibit a consistent nighttime cold bias at both urban and rural sites, a daytime warm bias at rural locations, and a pervasive dry bias across all seasons. The model also systematically overestimates near-surface wind speeds, further limiting its ability to accurately predict UHA. Although HRRR captures the expected slower nocturnal cooling in urban areas, it does not well capture advective heat transport under most wind regimes. Our findings reveal both systematic biases and urban representation limitations in current high-resolution NWP forecasts. Our forecast–observation comparisons underscore the need for improved urban parameterizations and evaluation frameworks focused on forecast skill, with important implications for heat-risk warning systems and forecasting in small and mid-sized cities.
more »
« less
High-resolution urban air quality monitoring from citizen science data with echo-state transformer networks
Abstract Citizen science data for monitoring air pollution have recently emerged as a powerful yet under-explored resource to complement expensive and sparse national air quality monitors. In urban environments, these new data have the potential to allow for high-resolution and high-frequency forecasts, and thereby to provide an assessment of population exposure at neighbourhood level. The complex spatio-temporal structure of these data, however, requires new flexible methods that are also able to provide timely forecasts. In this work, we propose a novel method that first provides forecasts with a reservoir computing approach, an echo-state network, adjusts the forecast with a transformer network with attention mechanism and then merges the echo-state and transformer forecast into a combined network. The stochastic nature of the method allows for a fast and more accurate forecast then individual predictors as well as standard statistical methods. Simulation and application to San Francisco air pollution show how the proposed method is able to produce high-resolution urban maps of air quality. Additionally, we show how these forecasts can be used to provide neighbour-level exposure assessment using population data, a task that would not be achievable with sparse government-sponsored air quality networks.
more »
« less
- PAR ID:
- 10573664
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of the Royal Statistical Society Series C: Applied Statistics
- Volume:
- 74
- Issue:
- 4
- ISSN:
- 0035-9254
- Format(s):
- Medium: X Size: p. 905-924
- Size(s):
- p. 905-924
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The southern Lake Michigan region of the United States, home to Chicago, Milwaukee, and other densely populated Midwestern cities, frequently experiences high pollutant episodes with unevenly distributed exposure and health burdens. Using the two‐way coupled Weather Research Forecast and Community Multiscale Air Quality Model (WRF‐CMAQ), we investigate criteria pollutants over a southern Lake Michigan domain using 1.3 and 4 km resolution hindcast simulations. We assess WRF‐CMAQ's performance using data from the National Climatic Data Center and Environmental Protection Agency Air Quality System. Our 1.3 km simulation slightly improves on the 4 km simulation's meteorological and chemical performance while also resolving key details in areas of high exposure and impact, that is, urban environments. At 1.3 km, we find that most air quality‐relevant meteorological components of WRF‐CMAQ perform at or above community benchmarks. WRF‐CMAQ's chemical performance also largely meets community standards, with substantial nuance depending on the performance metric and component assessed. For example, hourly simulated NO2and O3are highly correlated with observations (r > 0.6) while PM2.5is less so (r = 0.4). Similarly, hourly simulated NO2and PM2.5have low biases (<10%), whereas O3biases are larger (>30%). Simulated spatial pollutant patterns show distinct urban‐rural footprints, with urban NO2and PM2.520%–60% higher than rural, and urban O36% lower. We use our 1.3 km simulations to resolve high‐pollution areas within individual urban neighborhoods and characterize seasonal changes in O3regimes across tight spatial gradients. Our findings demonstrate both the benefits and limitations of high‐resolution simulations, particularly over urban settings.more » « less
-
Abstract The use of air quality monitoring networks to inform urban policies is critical especially where urban populations are exposed to unprecedented levels of air pollution. High costs, however, limit city governments’ ability to deploy reference grade air quality monitors at scale; for instance, only 33 reference grade monitors are available for the entire territory of Delhi, India, spanning 1500 sq km with 15 million residents. In this paper, we describe a high-precision spatio-temporal prediction model that can be used to derive fine-grained pollution maps. We utilize two years of data from a low-cost monitoring network of 28 custom-designed low-cost portable air quality sensors covering a dense region of Delhi. The model uses a combination of message-passing recurrent neural networks combined with conventional spatio-temporal geostatistics models to achieve high predictive accuracy in the face of high data variability and intermittent data availability from low-cost sensors (due to sensor faults, network, and power issues). Using data from reference grade monitors for validation, our spatio-temporal pollution model can make predictions within 1-hour time-windows at 9.4, 10.5, and 9.6% Mean Absolute Percentage Error (MAPE) over our low-cost monitors, reference grade monitors, and the combined monitoring network respectively. These accurate fine-grained pollution sensing maps provide a way forward to build citizen-driven low-cost monitoring systems that detect hazardous urban air quality at fine-grained granularities.more » « less
-
Breathing in fine particulate matter of diameter less than 2.5 µm (PM2.5) greatly increases an individual’s risk of cardiovascular and respiratory diseases. As climate change progresses, extreme weather events, including wildfires, are expected to increase, exacerbating air pollution. However, models often struggle to capture extreme pollution events due to the rarity of high PM2.5 levels in training datasets. To address this, we implemented cluster-based undersampling and trained Transformer models to improve extreme event prediction using various cutoff thresholds (12.1 µg/m3 and 35.5 µg/m3) and partial sampling ratios (10/90, 20/80, 30/70, 40/60, 50/50). Our results demonstrate that the 35.5 µg/m3 threshold, paired with a 20/80 partial sampling ratio, achieved the best performance, with an RMSE of 2.080, MAE of 1.386, and R2 of 0.914, particularly excelling in forecasting high PM2.5 events. Overall, models trained on augmented data significantly outperformed those trained on original data, highlighting the importance of resampling techniques in improving air quality forecasting accuracy, especially for high-pollution scenarios. These findings provide critical insights into optimizing air quality forecasting models, enabling more reliable predictions of extreme pollution events. By advancing the ability to forecast high PM2.5 levels, this study contributes to the development of more informed public health and environmental policies to mitigate the impacts of air pollution, and advanced the technology for building better air quality digital twins.more » « less
-
Conflict, manifesting as riots and protests, is a common occurrence in urban environments worldwide. Understanding their likely locations is crucial to policymakers, who may (for example) seek to provide overseas travelers with guidance on safe areas, or local policymakers with the ability to pre-position medical aid or police presences to mediate negative impacts associated with riot events. Past efforts to forecast these events have focused on the use of news and social media, restricting applicability to areas with available data. This study utilizes a ResNet convolutional neural network and high-resolution satellite imagery to estimate the spatial distribution of riots or protests within urban environments. At a global scale (N = 18,631 conflict events), by training our model to understand relationships between urban form and riot events, we are able to predict the likelihood that a given urban area will experience a riot or protest with accuracy as high as 97%. This research has the potential to improve our ability to forecast and understand the relationship between urban form and conflict events, even in data-sparse regions.more » « less
An official website of the United States government
