Abstract Citizen science data for monitoring air pollution have recently emerged as a powerful yet under-explored resource to complement expensive and sparse national air quality monitors. In urban environments, these new data have the potential to allow for high-resolution and high-frequency forecasts, and thereby to provide an assessment of population exposure at neighbourhood level. The complex spatio-temporal structure of these data, however, requires new flexible methods that are also able to provide timely forecasts. In this work, we propose a novel method that first provides forecasts with a reservoir computing approach, an echo-state network, adjusts the forecast with a transformer network with attention mechanism and then merges the echo-state and transformer forecast into a combined network. The stochastic nature of the method allows for a fast and more accurate forecast then individual predictors as well as standard statistical methods. Simulation and application to San Francisco air pollution show how the proposed method is able to produce high-resolution urban maps of air quality. Additionally, we show how these forecasts can be used to provide neighbour-level exposure assessment using population data, a task that would not be achievable with sparse government-sponsored air quality networks.
more »
« less
Modeling fine-grained spatio-temporal pollution maps with low-cost sensors
Abstract The use of air quality monitoring networks to inform urban policies is critical especially where urban populations are exposed to unprecedented levels of air pollution. High costs, however, limit city governments’ ability to deploy reference grade air quality monitors at scale; for instance, only 33 reference grade monitors are available for the entire territory of Delhi, India, spanning 1500 sq km with 15 million residents. In this paper, we describe a high-precision spatio-temporal prediction model that can be used to derive fine-grained pollution maps. We utilize two years of data from a low-cost monitoring network of 28 custom-designed low-cost portable air quality sensors covering a dense region of Delhi. The model uses a combination of message-passing recurrent neural networks combined with conventional spatio-temporal geostatistics models to achieve high predictive accuracy in the face of high data variability and intermittent data availability from low-cost sensors (due to sensor faults, network, and power issues). Using data from reference grade monitors for validation, our spatio-temporal pollution model can make predictions within 1-hour time-windows at 9.4, 10.5, and 9.6% Mean Absolute Percentage Error (MAPE) over our low-cost monitors, reference grade monitors, and the combined monitoring network respectively. These accurate fine-grained pollution sensing maps provide a way forward to build citizen-driven low-cost monitoring systems that detect hazardous urban air quality at fine-grained granularities.
more »
« less
- Award ID(s):
- 2004572
- PAR ID:
- 10373775
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Climate and Atmospheric Science
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2397-3722
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Belmont County, Ohio is heavily dominated by unconventional oil and gas development that results in high levels of ambient air pollution. Residents here chose to work with a national volunteer network to develop a method of participatory science to answer questions about the association between impact on the health of their community and pollution exposure from the many industrial point sources in the county and surrounding area and river valley. After first directing their questions to the government agencies responsible for permitting and protecting public health, residents noted the lack of detailed data and understanding of the impact of these industries. These residents and environmental advocates are using the resulting science to open a dialogue with the EPA in hopes to ultimately collaboratively develop air quality standards that better protect public health. Results from comparing measurements from a citizen-led participatory low-cost, high-density air pollution sensor network of 35 particulate matter and 25 volatile organic compound sensors against regulatory monitors show low correlations (consistently R 2 < 0.55). This network analysis combined with complementary models of emission plumes are revealing the inadequacy of the sparse regulatory air pollution monitoring network in the area, and opening many avenues for public health officials to further verify people’s experiences and act in the interest of residents’ health with enforcement and informed permitting practices. Further, the collaborative best practices developed by this study serve as a launchpad for other community science efforts looking to monitor local air quality in response to industrial growth.more » « less
-
null (Ed.)Short-term exposure to fine particulate matter (PM2.5) pollution is linked to numerous adverse health effects. Pollution episodes, such as wildfires, can lead to substantial increases in PM2.5 levels. However, sparse regulatory measurements provide an incomplete understanding of pollution gradients. Here, we demonstrate an infrastructure that integrates community-based measurements from a network of low-cost PM2.5 sensors with rigorous calibration and a Gaussian process model to understand neighborhood-scale PM2.5 concentrations during three pollution episodes (July 4, 2018, fireworks; July 5 and 6, 2018, wildfire; Jan 3−7, 2019, persistent cold air pool, PCAP). The firework/wildfire events included 118 sensors in 84 locations, while the PCAP event included 218 sensors in 138 locations. The model results accurately predict reference measurements during the fireworks (n: 16, hourly root-mean-square error, RMSE, 12.3−21.5 μg/m3, n(normalized)-RMSE: 9−24%), the wildfire (n: 46, RMSE: 2.6−4.0 μg/m3; nRMSE: 13.1−22.9%), and the PCAP (n: 96, RMSE: 4.9−5.7 μg/m3; nRMSE: 20.2−21.3%). They also revealed dramatic geospatial differences in PM2.5 concentrations that are not apparent when only considering government measurements or viewing the US Environmental Protection Agency’s AirNow’s visualizations. Complementing the PM2.5 estimates and visualizations are highly resolved uncertainty maps. Together, these results illustrate the potential for low-cost sensor networks that combined with a data-fusion algorithm and appropriate calibration and training can dynamically and with improved accuracy estimate PM2.5 concentrations during pollution episodes. These highly resolved uncertainty estimates can provide a much-needed strategy to communicate uncertainty to end users.more » « less
-
Abstract The paucity of fine particulate matter (PM2.5) measurements limits estimates of air pollution mortality in Sub‐Saharan Africa. Well calibrated low‐cost sensors can provide reliable data especially where reference monitors are unavailable. We evaluate the performance of Clarity Node‐S PM monitors against a Tapered element oscillating microbalance (TEOM) 1400a and develop a calibration model in Mombasa, Kenya's second largest city. As‐reported Clarity Node‐S data from January 2023 through April 2023 was moderately correlated with the TEOM‐1400a measurements (R2 = 0.61) and exhibited a mean absolute error (MAE) of 7.03 μg m−3. Employing three calibration models, namely, multiple linear regression (MLR), Gaussian mixture regression and random forest (RF) decreased the MAE to 4.28, 3.93, and 4.40 μg m−3respectively. TheR2value improved to 0.63 for the MLR model but all other models registered a decrease (R2 = 0.44 and 0.60 respectively). Applying the correction factor to a five‐sensor network in Mombasa that was operated between July 2021 and July 2022 gave insights to the air quality in the city. The average daily concentrations of PM2.5within the city ranged from 12 to 18 μg m−3. The concentrations exceeded the WHO daily PM2.5limits more than 50% of the time, in particular at the sites nearby frequent industrial activity. Higher averages were observed during the dry and cold seasons and during early morning and evening periods of high activity. These results represent some of the first air quality monitoring measurements in Mombasa and highlight the need for more study.more » « less
-
Community science has increased in popularity in communities where residents hope to investigate the relationship between environmental issues and personal health. This study partnered with neighborhoods in the most polluted residential zip code in the US to conduct community science air quality monitoring. We conducted 60 semi-structured interviews after two monitoring deployments to understand participants’ subjective experiences of pollution exposure, their engagement with low-cost air quality monitors, and their data interpretation. We utilize the environmental health concept ‘exposure experience’ to analyze how participants use personal monitors, understand their data, and reinterpret their pollution exposure as a result. We further explore how participants’ understandings are circumscribed by the technological features of low-cost monitors. We find that participants adopt both protective and mitigating behavioral changes based on information gained from personal experiments and hypothesis testing while using the monitors. Of their own accord, 40% of participants in this study adopted mitigation behaviors after identifying sources that impacted their personal air quality. Our analysis reveals that real-time data accessibility through low-cost monitors builds exposure awareness and enables residents of environmental justice communities to test, validate, or invalidate sensory experiences and challenge existing assumptions. These findings point to specific pathways for using low-cost monitors to support individual decision-making and contribute to behavioral change. Findings also identify some limitations of low-cost monitors; designers of low-cost monitors should consider how composite Air Quality Scores may encourage community scientists to equally value scientifically-established pollutants (e.g., PM) with less scientifically-established pollutants (e.g., TVOCs), without additional scientific training and health-related information.more » « less
An official website of the United States government
