skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


This content will become publicly available on September 1, 2025

Title: Generalized free cumulants for quantum chaotic systems
A<sc>bstract</sc> The eigenstate thermalization hypothesis (ETH) is the leading conjecture for the emergence of statistical mechanics in generic isolated quantum systems and is formulated in terms of the matrix elements of operators. An analog known as the ergodic bipartition (EB) describes entanglement and locality and is formulated in terms of the components of eigenstates. In this paper, we significantly generalize the EB and unify it with the ETH, extending the EB to study higher correlations and systems out of equilibrium. Our main result is a diagrammatic formalism that computes arbitrary correlations between eigenstates and operators based on a recently uncovered connection between the ETH and free probability theory. We refer to the connected components of our diagrams as generalized free cumulants. We apply our formalism in several ways. First, we focus on chaotic eigenstates and establish the so-called subsystem ETH and the Page curve as consequences of our construction. We also improve known calculations for thermal reduced density matrices and comment on an inherently free probabilistic aspect of the replica approach to entanglement entropy previously noticed in a calculation for the Page curve of an evaporating black hole. Next, we turn to chaotic quantum dynamics and demonstrate the ETH as a sufficient mechanism for thermalization, in general. In particular, we show that reduced density matrices relax to their equilibrium form and that systems obey the Page curve at late times. We also demonstrate that the different phases of entanglement growth are encoded in higher correlations of the EB. Lastly, we examine the chaotic structure of eigenstates and operators together and reveal previously overlooked correlations between them. Crucially, these correlations encode butterfly velocities, a well-known dynamical property of interacting quantum systems.  more » « less
Award ID(s):
2047193
PAR ID:
10573690
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Nature Link
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
9
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a detailed analysis of the connection between chaos and the onset of thermalization in the spin-boson Dicke model. This system has a well-defined classical limit with two degrees of freedom, and it presents both regular and chaotic regions. Our studies of the eigenstate expectation values and the distributions of the off-diagonal elements of the number of photons and the number of excited atoms validate the diagonal and off-diagonal eigenstate thermalization hypothesis (ETH) in the chaotic region, thus ensuring thermalization. The validity of the ETH reflects the chaotic structure of the eigenstates, which we corroborate using the von Neumann entanglement entropy and the Shannon entropy. Our results for the Shannon entropy also make evident the advantages of the so-called “efficient basis” over the widespread employed Fock basis when investigating the unbounded spectrum of the Dicke model. The efficient basis gives us access to a larger number of converged states than what can be reached with the Fock basis. 
    more » « less
  2. We study subsystem entropies in 2d CFTs for subsystems constituting a finite fraction of the full system. We focus on the extensive contribution, which scales linearly with the subsystem size in the thermodynamic limit. We employ the so-called diagonal approximation to evaluate subsystem entropy for chaotic CFTs in the thermal state (canonical ensemble), the microcanonical ensemble, and in a primary state, matching previously known results. We then proceed to find analytic expressions for the subsystem entropy at leading order in c , when the global CFT state is the KdV-generalized Gibbs ensemble or the KdV-microcanonical ensemble. Previous studies of primary eigenstates have shown that, akin to the fixed-area states in AdS/CFT, the corresponding subsystem entanglement spectrum is flat. This behavior is seemingly in sharp contradiction with that of the thermal (microcanonical) state, and thus in apparent contradiction with the subsystem eigenstate thermalization hypothesis (ETH). In this paper, we resolve this issue by comparing the primary state with the KdV-(micro)canonical ensemble. We show that the results are consistent with the KdV-generalized version of the subsystem ETH, in which local properties of quantum eigenstates are governed by their values of conserved KdV charges. Our paper solidifies evidence for the KdV-generalized ETH in 2d CFTs and emphasizes Rényi entropy as a sensitive probe of the reduced-density matrix. 
    more » « less
  3. Abstract Long-lived dark states, in which an experimentally accessible qubit is not in thermal equilibrium with a surrounding spin bath, are pervasive in solid-state systems. We explain the ubiquity of dark states in a large class of inhomogeneous central spin models using the proximity to integrable lines with exact dark eigenstates. At numerically accessible sizes, dark states persist as eigenstates at large deviations from integrability, and the qubit retains memory of its initial polarization at long times. Although the eigenstates of the system are chaotic, exhibiting exponential sensitivity to small perturbations, they do not satisfy the eigenstate thermalization hypothesis. Rather, we predict long relaxation times that increase exponentially with system size. We propose that this intermediatechaotic but non-ergodicregime characterizes mesoscopic quantum dot and diamond defect systems, as we see no numerical tendency towards conventional thermalization with a finite relaxation time. 
    more » « less
  4. The eigenstate thermalisation hypothesis (ETH) is a statisticalcharacterisation of eigen-energies, eigenstates and matrix elements oflocal operators in thermalising quantum systems. We develop an ETH-likeansatz of a partially thermalising system composed of aspin- \tfrac{1}{2} 1 2 coupled to a finite quantum bath. The spin-bath coupling is sufficientlyweak that ETH does not apply, but sufficiently strong that perturbationtheory fails. We calculate (i) the distribution of fidelitysusceptibilities, which takes a broadly distributed form, (ii) thedistribution of spin eigenstate entropies, which takes a bi-modal form,(iii) infinite time memory of spin observables, (iv) the distribution ofmatrix elements of local operators on the bath, which is non-Gaussian,and (v) the intermediate entropic enhancement of the bath, whichinterpolates smoothly between S = 0 S = 0 and the ETH value of S = \log 2 S = log 2 .The enhancement is a consequence of rare many-body resonances, and isasymptotically larger than the typical eigenstate entanglement entropy.We verify these results numerically and discuss their connections to themany-body localisation transition. 
    more » « less
  5. The eigenstate thermalization hypothesis (ETH) in chaotic two-dimensional CFTs is subtle due to the presence of infinitely many conserved KdV charges. Previous works have shown that primary CFT eigenstates exhibit a flat entanglement spectrum, which is very different from that of the microcanonical ensemble. This appears to contradict conventional ETH, which does not account for KdV charges. In a companion paper \cite{1}, we resolve this discrepancy by analyzing the subsystem entropy of a chaotic CFT in KdV-generalized Gibbs and microcanonical ensembles. In this paper, we perform parallel computations within the framework of AdS/CFT. We focus on the high-density limit, which corresponds to the thermodynamic limit in conformal theories. In this regime, holographic Rényi entropy can be calculated using the so-called *gluing construction*. We specifically study the KdV-generalized microcanonical ensemble where the densities of the first two KdV charges are fixed: $$ \langle Q_1 \rangle = q_1, \quad \langle Q_3 \rangle = q_3 $$ with the condition $$q_3 - q_1^2 \ll q_1^2$$. In this regime, we find that the refined Rényi entropy $$\tilde{S}_n$$ becomes independent of $$n$$ for $$n > n_{\text{cut}}$$, where $$n_{\text{cut}}$$ depends on $$q_1$$ and $$q_3$$. By taking the primary state limit $$q_3 \to q_1^2$$, we recover the flat entanglement spectrum characteristic of fixed-area states, consistent with the behavior of primary states. This result supports the consistency of KdV-generalized ETH in 2d CFTs. 
    more » « less