Abstract Climate warming is expected to increase respiration rates of tropical forest trees and lianas, which may negatively affect the carbon balance of tropical forests. Thermal acclimation could mitigate the expected respiration increase, but the thermal acclimation potential of tropical forests remains largely unknown. In a tropical forest in Panama, we experimentally increased nighttime temperatures of upper canopy leaves of three tree and two liana species by on average 3 °C for 1 week, and quantified temperature responses of leaf dark respiration. Respiration at 25 °C (R25) decreased with increasing leaf temperature, but acclimation did not result in perfect homeostasis of respiration across temperatures. In contrast, Q10of treatment and control leaves exhibited similarly high values (range 2.5–3.0) without evidence of acclimation. The decrease inR25was not caused by respiratory substrate depletion, as warming did not reduce leaf carbohydrate concentration. To evaluate the wider implications of our experimental results, we simulated the carbon cycle of tropical latitudes (24°S–24°N) from 2000 to 2100 using a dynamic global vegetation model (LM3VN) modified to account for acclimation. Acclimation reduced the degree to which respiration increases with climate warming in the model relative to a no‐acclimation scenario, leading to 21% greater increase in net primary productivity and 18% greater increase in biomass carbon storage over the 21st century. We conclude that leaf respiration of tropical forest plants can acclimate to nighttime warming, thereby reducing the magnitude of the positive feedback between climate change and the carbon cycle.
more »
« less
This content will become publicly available on December 20, 2025
Importance of Timing of Dark Acclimation for Estimating Light Inhibition of Leaf Respiratory CO 2 Efflux
SUMMARY STATEMENT The degree of inhibition of leaf respiration by light is often studied, but the methods used and the results obtained are variable. We suggest that in the future daytime leaf respiration is measured 3 min after dark acclimation to avoid under‐estimating the degree of light inhibition of leaf respiration. This will most likely speed up future surveys and perhaps also result in less inter‐study variation in the calculated degree of light inhibition of leaf respiration.
more »
« less
- Award ID(s):
- 2224743
- PAR ID:
- 10573718
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Plant, Cell & Environment
- ISSN:
- 0140-7791
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Nonstructural carbohydrate (NSC) concentrations might reflect the strategies described in the leaf economic spectrum (LES) due to their dependence on photosynthesis and respiration.We examined if NSC concentrations correlate with leaf structure, chemistry, and physiology traits for 114 species from 19 sites and 5 biomes around the globe.Total leaf NSC concentrations varied greatly from 16 to 199 mg g−1dry mass and were mostly independent of leaf gas exchange and the LES traits. By contrast, leaf NSC residence time was shorter in species with higher rates of photosynthesis, following the fast‐slow strategies in the LES. An average leaf held an amount of NSCs that could sustain one night of leaf respiration and could be replenished in just a few hours of photosynthesis under saturating light, indicating that most daily carbon gain is exported.Our results suggest that NSC export is clearly linked to the economics of return on resource investment.more » « less
-
Abstract Switchgrass (Panicum virgatumL.) is a prominent bioenergy crop with robust resilience to environmental stresses. However, our knowledge regarding how precipitation changes affect switchgrass photosynthesis and its responses to light and CO2remains limited. To address this knowledge gap, we conducted a field precipitation experiment with five different treatments, including −50%, −33%, 0%, +33%, and +50% of ambient precipitation. To determine the responses of leaf photosynthesis to CO2concentration and light, we measured leaf net photosynthesis of switchgrass under different CO2concentrations and light levels in 2020 and 2021 for each of the five precipitation treatments. We first evaluated four light and CO2response models (i.e., rectangular hyperbola model, nonrectangular hyperbola model, exponential model, and the modified rectangular hyperbola model) using the measurements in the ambient precipitation treatment. Based on the fitting criteria, we selected the nonrectangular hyperbola model as the optimal model and applied it to all precipitation treatments, and estimated model parameters. Overall, the model fit field measurements well for the light and CO2response curves. Precipitation change did not influence the maximum net photosynthetic rate (Pmax) but influenced other model parameters including quantum yield (α), convexity (θ), dark respiration (Rd), light compensation point (LCP), and saturated light point (LSP). Specifically, the meanPmaxof five precipitation treatments was 17.6 μmol CO2m−2 s−1, and the ambient treatment tended to have a higherPmax. The +33% treatment had the highestα, and the ambient treatment had lowerθandLCP, higherRd, and relatively lowerLSP. Furthermore, precipitation significantly influenced all model parameters of CO2response. The ambient treatment had the highestPmax, largestα, and lowestθ,Rd, and CO2compensation pointLCP. Overall, this study improved our understanding of how switchgrass leaf photosynthesis responds to diverse environmental factors, providing valuable insights for accurately modeling switchgrass ecophysiology and productivity.more » « less
-
Abstract The rapid A‐Ciresponse (RACiR) technique alleviates limitations of measuring photosynthetic capacity by reducing the time needed to determine the maximum carboxylation rate (Vcmax) and electron transport rate (Jmax) in leaves. Photosynthetic capacity and its relationships with leaf development are important for understanding ecological and agricultural productivity; however, our current understanding is incomplete. Here, we show that RACiR can be used in previous generation gas exchange systems (i.e., the LI‐6400) and apply this method to rapidly investigate developmental gradients of photosynthetic capacity in poplar. We compared RACiR‐determined Vcmaxand Jmaxas well as respiration and stomatal conductance (gs) across four stages of leaf expansion inPopulus deltoidesand the poplar hybrid 717‐1B4 (Populus tremula × Populus alba). These physiological data were paired with leaf traits including nitrogen concentration, chlorophyll concentrations, and specific leaf area. Several traits displayed developmental trends that differed between the poplar species, demonstrating the utility of RACiR approaches to rapidly generate accurate measures of photosynthetic capacity. By using both new and old machines, we have shown how more investigators will be able to incorporate measurements of important photosynthetic traits in future studies and further our understanding of relationships between development and leaf‐level physiology.more » « less
-
Summary Traditionally, leaves were thought to be supplied withCO2for photosynthesis by the atmosphere and respiration. Recent studies, however, have shown that the xylem also transports a significant amount of inorganic carbon into leaves through the bulk flow of water. However, little is known about the dynamics and proportion of xylem‐transportedCO2that is assimilated, vs simply lost to transpiration.Cut leaves ofPopulus deltoidesandBrassica napuswere placed in eitherKCl or one of three [NaH13CO3] solutions dissolved in water to simultaneously measure the assimilation and the efflux of xylem‐transportedCO2exiting the leaf across light andCO2response curves in real‐time using a tunable diode laser absorption spectroscope.The rates of assimilation and efflux of xylem‐transportedCO2increased with increasing xylem [13CO2*] and transpiration. Under saturating irradiance, rates of assimilation using xylem‐transportedCO2accounted forc.2.5% of the total assimilation in both species in the highest [13CO2*].The majority of xylem‐transportedCO2is assimilated, and efflux is small compared to respiration. Assimilation of xylem‐transportedCO2comprises a small portion of total photosynthesis, but may be more important whenCO2is limiting.more » « less
An official website of the United States government
