skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2224743

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY STATEMENT The degree of inhibition of leaf respiration by light is often studied, but the methods used and the results obtained are variable. We suggest that in the future daytime leaf respiration is measured 3 min after dark acclimation to avoid under‐estimating the degree of light inhibition of leaf respiration. This will most likely speed up future surveys and perhaps also result in less inter‐study variation in the calculated degree of light inhibition of leaf respiration. 
    more » « less
    Free, publicly-accessible full text available December 20, 2025
  2. Abstract AimArctic plants survived the Pleistocene glaciations in unglaciated refugia. The number, ages, and locations of these refugia are often unclear. We use high‐resolution genomic data from present‐day and Little‐Ice‐Age populations of Arctic Bell‐Heather to re‐evaluate the biogeography of this species and determine whether it had multiple independent refugia or a single refugium in Beringia. LocationCircumpolar Arctic and Coastal British Columbia (BC) alpine. TaxonCassiope tetragonaL., subspeciessaximontanaandtetragona, outgroupC. mertensiana(Ericaceae). MethodsWe built genotyping‐by‐sequencing (GBS) libraries usingCassiope tetragonatissue from 36 Arctic locations, including two ~250‐ to 500‐year‐old populations collected under glacial ice on Ellesmere Island, Canada. We assembled a de novo GBS reference to call variants. Population structure, genetic diversity and demography were inferred from PCA, ADMIXTURE, fastsimcoal2, SplitsTree, and several population genomics statistics. ResultsPopulation structure analyses identified 4–5 clusters that align with geographic locations. Nucleotide diversity was highest in Beringia and decreased eastwards across Canada. Demographic coalescent analyses dated the following splits with Alaska: BC subspeciessaximontana(5 mya), Russia (~1.4 mya), Europe (>200–600 kya), and Greenland (~60 kya). Northern Canada populations appear to have formed during the current interglacial (7–9 kya). Admixture analyses show genetic variants from Alaska appear more frequently in present‐day than historic plants on Ellesmere Island. ConclusionsPopulation and demographic analyses support BC, Alaska, Russia, Europe and Greenland as all having had independent Pleistocene refugia. Northern Canadian populations appear to be founded during the current interglacial with genetic contributions from Alaska, Europe and Greenland. We found evidence, on Ellesmere Island, for continued recent gene flow in the last 250–500 years. These results suggest that a re‐analysis of other Arctic species with shallow population structure using higher resolution genomic markers and demographic analyses may help reveal deeper structure and other circumpolar glacial refugia. 
    more » « less
  3. Abstract Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we presentThe Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Giovannoni, Stephen J; Weedon, James (Ed.)
    ABSTRACT Rapid climate change in the Arctic is altering microbial structure and function, with important consequences for the global ecosystem. Emerging evidence suggests organisms in higher trophic levels may also influence microbial communities, but whether warming alters these effects is unclear. Wolf spiders are dominant Arctic predators whose densities are expected to increase with warming. These predators have temperature-dependent effects on decomposition via their consumption of fungal-feeding detritivores, suggesting they may indirectly affect the microbial structure as well. To address this, we used a fully factorial mesocosm experiment to test the effects of wolf spider density and warming on litter microbial structure in Arctic tundra. We deployed replicate litter bags at the surface and belowground in the organic soil profile and analyzed the litter for bacterial and fungal community structure, mass loss, and nutrient characteristics after 2 and 14 months. We found there were significant interactive effects of wolf spider density and warming on fungal but not bacterial communities. Specifically, higher wolf spider densities caused greater fungal diversity under ambient temperature but lower fungal diversity under warming at the soil surface. We also observed interactive treatment effects on fungal composition belowground. Wolf spider density influenced surface bacterial composition, but the effects did not change with warming. These findings suggest a widespread predator can have indirect, cascading effects on litter microbes and that effects on fungi specifically shift under future expected levels of warming. Overall, our study highlights that trophic interactions may play important, albeit overlooked, roles in driving microbial responses to warming in Arctic terrestrial ecosystems. IMPORTANCEThe Arctic contains nearly half of the global pool of soil organic carbon and is one of the fastest warming regions on the planet. Accelerated decomposition of soil organic carbon due to warming could cause positive feedbacks to climate change through increased greenhouse gas emissions; thus, changes in ecological dynamics in this region are of global relevance. Microbial structure is an important driver of decomposition and is affected by both abiotic and biotic conditions. Yet how activities of soil-dwelling organisms in higher trophic levels influence microbial structure and function is unclear. In this study, we demonstrate that predicted changes in abundances of a dominant predator and warming interactively affect the structure of litter-dwelling fungal communities in the Arctic. These findings suggest predators may have widespread, indirect cascading effects on microbial communities, which could influence ecosystem responses to future climate change. 
    more » « less
    Free, publicly-accessible full text available July 17, 2025
  5. Abstract The seasonal behavior of fluvial dissolved silica (DSi) concentrations, termedDSi regime, mediates the timing of DSi delivery to downstream waters and thus governs river biogeochemical function and aquatic community condition. Previous work identified five distinct DSi regimes across rivers spanning the Northern Hemisphere, with many rivers exhibiting multiple DSi regimes over time. Several potential drivers of DSi regime behavior have been identified at small scales, including climate, land cover, and lithology, and yet the large‐scale spatiotemporal controls on DSi regimes have not been identified. We evaluate the role of environmental variables on the behavior of DSi regimes in nearly 200 rivers across the Northern Hemisphere using random forest models. Our models aim to elucidate the controls that give rise to (a) average DSi regime behavior, (b) interannual variability in DSi regime behavior (i.e., Annual DSi regime), and (c) controls on DSi regime shape (i.e., minimum and maximum DSi concentrations). Average DSi regime behavior across the period of record was classified accurately 59% of the time, whereas Annual DSi regime behavior was classified accurately 80% of the time. Climate and primary productivity variables were important in predicting Average DSi regime behavior, whereas climate and hydrologic variables were important in predicting Annual DSi regime behavior. Median nitrogen and phosphorus concentrations were important drivers of minimum and maximum DSi concentrations, indicating that these macronutrients may be important for seasonal DSi drawdown and rebound. Our findings demonstrate that fluctuations in climate, hydrology, and nutrient availability of rivers shape the temporal availability of fluvial DSi. 
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  6. Abstract A significant warming effect on arctic tundra is greening. Although this increase in predominantly woody vegetation has been linked to increases in gross primary productivity, increasing temperatures also stimulate ecosystem respiration. We present a novel analysis from small-scale plot measurements showing that the shape of the temperature- and light-dependent sink-to-source threshold (where net ecosystem exchange (NEE) equals zero) differs between two tussock tundra ecosystems differing in leaf area index (LAI). At the higher LAI site, the threshold is exceeded (i.e the ecosystem becomes a source) at relatively higher temperatures under low light but at lower temperatures under high light. At the lower LAI site, the threshold is exceeded at relatively lower temperatures under low light but at higher temperatures under high light. We confirmed this response at a single site where LAI was experimentally increased. This suggests the carbon balance of the tundra may be sensitive to small increases in temperature under low light, but that this effect may be significantly offset by increases in LAI. Importantly, we found that this LAI effect is reversed under high light, and so in a warming tundra, greater vegetation cover could have a progressively negative effect on net carbon uptake. 
    more » « less
  7. Abstract In the Arctic tundra, warming is anticipated to stimulate nutrient release and potentially alleviate plant nutrient limitations. Typically simulated by fertilization experiments that saturate plant nutrient demand, future increases in soil fertility are thought to favor ectomycorrhizal (EcM) over ericaceous shrubs and have often been identified as a key driver of Arctic shrub expansion. However, the projected increases in fertility will likely vary in their alleviation of nutrient limitations. The resulting responses of shrubs and their mycorrhizae across the gradient of nutrient limitation may be nonlinear and could contradict the current predictions of tundra vegetation shifts. We compared the functional responses of two dominant shrubs, EcM dwarf birch (Betula nana) and ericaceous Labrador tea (Rhododendron tomentosum), across a long‐term nitrogen and phosphorus fertilization gradient experiment in Arctic Alaska. Using linear mixed‐effects modeling, we tested the responses of shrub cover, height, and root enzyme activities to soil fertility. We found thatB. nanacover and height linearly increased with soil fertility. In contrast,R. tomentosumcover initially increased, but decreased after surpassing the intermediate levels of increased soil fertility. Its height did not change. Enzyme activity did not respond to soil fertility on EcM‐colonizedB. nanaroots, but sharply declined onR. tomentosumroots. Overall, the nonlinear responses of shrubs to our fertility gradient demonstrate the importance of experiments grounded in replicated regression design. Our results indicate that under moderate increases in soil fertility, Arctic shrub expansion may not only include deciduous EcM shrubs but also ericaceous shrubs. Regardless of shifts aboveground, changes in root enzyme activity belowground point to some EcM shrub species playing a more influential role in tundra soils; as EcM roots remained steady in their liberation of soil organic nutrients with heightened soil fertility, degradative root enzyme activity on the dominant ericaceous shrub dropped—in some instances with even the slightest increase in fertility. 
    more » « less
  8. Abstract Climate change is rapidly altering hydrological processes and consequently the structure and functioning of Arctic ecosystems. Predicting how these alterations will shape biogeochemical responses in rivers remains a major challenge. We measured [C]arbon and [N]itrogen concentrations continuously from two Arctic watersheds capturing a wide range of flow conditions to assess understudied event‐scale C and N concentration‐discharge (C‐Q) behavior and post‐event recovery of stoichiometric conditions. The watersheds represent low‐gradient, tundra landscapes typical of the eastern Brooks Range on the North Slope of Alaska and are part of the Arctic Long‐Term Ecological Research sites: the Kuparuk River and Oksrukuyik Creek. In both watersheds, we deployed high‐frequency optical sensors to measure dissolved organic carbon (DOC), nitrate (), and total dissolved nitrogen (TDN) for five consecutive thaw seasons (2017–2021). Our analyses revealed a lag in DOC: stoichiometric recovery after a hydrologic perturbation: while DOC was consistently elevated after high flows, diluted during rainfall events and consequently, recovery in post‐event concentration was delayed. Conversely, the co‐enrichment of TDN at high flows, even in watersheds with relatively high N‐demand, represents a potential “leak” of hydrologically available organic N to downstream ecosystems. Our use of high‐frequency, long‐term optical sensors provides an improved method to estimate carbon and nutrient budgets and stoichiometric recovery behavior across event and seasonal timescales, enabling new insights and conceptualizations of a changing Arctic, such as assessing ecosystem disturbance and recovery across multiple timescales. 
    more » « less
  9. Abstract The thawing of ancient organic carbon stored in arctic permafrost soils, and its oxidation to carbon dioxide (CO2, a greenhouse gas), is predicted to amplify global warming. However, the extent to which organic carbon in thawing permafrost soils will be released as CO2is uncertain. A critical unknown is the extent to which dissolved organic carbon (DOC) from thawing permafrost soils is respired to CO2by microbes upon export of freshly thawed DOC to both dark bottom waters and sunlit surface waters. In this study, we quantified the radiocarbon age and13C composition of CO2produced by microbial respiration of DOC that was leached from permafrost soils and either kept in the dark or exposed to ultraviolet and visible wavelengths of light. We show that permafrost DOC most labile to microbial respiration was as old or older (ages 4,000–11,000 a BP) and more13C‐depleted than the bulk DOC in both dark and light‐exposed treatments, likely indicating respiration of old,13C‐depleted lignin and lipid fractions of the permafrost DOC pool. Light exposure either increased, decreased, or had no effect on the magnitude of microbial respiration of old permafrost DOC relative to respiration in the dark, depending on both the extent of DOC oxidation during exposure to light and the wavelength of light. Together, these findings suggest that photochemical changes affecting the lability of permafrost DOC during sunlight exposure are an important control on the magnitude of microbial respiration of permafrost DOC in arctic surface waters. 
    more » « less
  10. Summary Root‐associated fungi (RAF) and root traits regulate plant acquisition of nitrogen (N), which is limiting to growth in Arctic ecosystems. With anthropogenic warming, a new N source from thawing permafrost has the potential to change vegetation composition and increase productivity, influencing climate feedbacks. Yet, the impact of warming on tundra plant root traits, RAF, and access to permafrost N is uncertain.We investigated the relationships between RAF, species‐specific root traits, and uptake of N from the permafrost boundary by tundra plants experimentally warmed for nearly three decades at Toolik Lake, Alaska.Warming increased acquisitive root traits of nonmycorrhizal and mycorrhizal plants. RAF community composition of ericoid (ERM) but not ectomycorrhizal (ECM) shrubs was impacted by warming and correlated with root traits. RAF taxa in the dark septate endophyte, ERM, and ECM guilds strongly correlated with permafrost N uptake for ECM and ERM shrubs. Overall, a greater proportion of variation in permafrost N uptake was related to root traits than RAF.Our findings suggest that warming Arctic ecosystems will result in interactions between roots, RAF, and newly thawed permafrost that may strongly impact feedbacks to the climate system through mechanisms of carbon and N cycling. 
    more » « less