skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Producing two-dimensional dust clouds and clusters using a movable electrode for complex plasma and fundamental physics experiments
We report a Bidirectional Electrode Control Arm Assembly (BECAA) for precisely manipulating dust clouds levitated above the powered electrode in RF plasmas. The reported techniques allow the creation of perfectly 2D dust layers by eliminating off-plane particles by moving the electrode from outside the plasma chamber without altering the plasma conditions. The tilting and moving of electrodes using BECAA also allows the precise and repeatable elimination of dust particles one by one to achieve any desired number of grains N without trial and error. Simultaneously acquired top and side view images of dust clusters show that they are perfectly planar or 2D. A demonstration of clusters with N = 1–28 without changing the plasma conditions is presented to show the utility of BECAA for complex plasma and statistical physics experimental design. Demonstration videos and 3D printable part files are available for easy reproduction and adaptation of this new method to repeatably produce 2D clusters in existing RF plasma chambers.  more » « less
Award ID(s):
2148653
PAR ID:
10573724
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Review of Scientific Instruments
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
95
Issue:
5
ISSN:
0034-6748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the experimental realization of optical trapping and controlled manipulations of single particles of arbitrary properties, e.g., nano- to micrometer in size, transparent spheres to strongly light absorbing nonspherical particles, in low-pressure rf plasmas. First, we show optical trapping and transport of single particles in an unmagnetized rf plasma. Then, we show similar observations in a weakly magnetized rf plasma. This is the first demonstration of actively transporting (pushing and pulling) light-absorbing, nonspherical single particles in plasmas. The result suggests that optically trapped, actively controlled, single plasma dust particles (not limited to those externally sampled spheres) could be an in situ micro-probe for dusty plasma and magnetized dusty plasma diagnostics. 
    more » « less
  2. Radio-frequency (RF) charged particle traps, such as the Paul trap or higher order RF multipole traps, may be used to trap quasi-neutral plasma. The presence of positive and negative plasma species mitigates the ejection of particles that occurs due to space charge repulsion. For symmetric species, such as a pair plasma, the trapped particle distribution is essentially equal for both species. For plasma with species of disparate charge-to-mass ratio, the RF parameters are chosen to directly trap the lighter species, leading to loss of the heavier species until sufficient net space charge develops to prevent further loss. Two-dimensional (2D) electrostatic particle-in-cell simulations are performed of cases with mass ratio m+/m− = 10, and also with ion–electron plasma. Multipole cases including order N = 2 (quadrupole) and higher order N = 8 (hexadecapole) are considered. The light ion-heavy ion N = 8 case exhibits particles losses less than 5% over 2500 RF periods, but the N = 8 ion–electron case exhibits a higher loss rate, likely due to non-adiabaticity of electron trajectories at the boundary, but still with low total electron loss current on the order of 10 μA. The N = 2 ion-electron case is adiabatic and stable, but is subject to a smaller trapping volume and greater initial perturbation of the bulk plasma by the trapping field. 
    more » « less
  3. The Coulomb expansion of a thin cloud of charged dust particles was observed experimentally, in a plasma afterglow. This expansion occurs due to mutual repulsion among positively charged dust particles, after electrons and ions have escaped the chamber volume. In the experiment, a two-dimensional cloud of dust particles was initially levitated in a glow-discharge plasma. The power was then switched off to produce afterglow conditions. The subsequent fall of the dust cloud was slowed by reversing the electric force, to an upward direction, allowing an extended observation. At early time, measurements of the Coulomb expansion in the horizontal direction are found to be accurately modeled by the equation of state for a uniformly charged thin disk. Finally, bouncing from the lower electrode was found to be avoided by lowering the impact velocity <100 mm/s. 
    more » « less
  4. Abstract A method is demonstrated for controlling the charge of a dust particle in a plasma afterglow, allowing a wider range of outcomes than an earlier method. As in the earlier method, the dust particles are located near an electrode that has a DC voltage during the afterglow. Here, that DC voltage is switched to a positive value at a specified delay time, instead of maintaining a constant negative voltage as in the earlier method. Adjusting the timing of this switching allows one to control the residual charge gradually over a wide range that includes both negative and positive values of charge. For comparison, only positive residual charges were attained in the earlier method. We were able to adjust the residual charge from about −2000 eto +10 000 e, for our experimental parameters (8.35 µm particles, 8 mTorr argon pressure, and a DC voltage that was switched from −150 V to +125 V within the first two milliseconds of the afterglow). The plasma conditions near the dust particles changed from ion-rich to electron-rich, when the electrode was switched from cathodic to anodic. Making this change at a specified time, as the electrons and ions decay in the afterglow, provides this control capability. These results also give insight into the time development of a dust particle’s charge in the afterglow, on a sub-millisecond time scale. 
    more » « less
  5. Self-organization of dust grains into stable filamentary dust structures (or “chains”) largely depends on dynamic interactions between individual charged dust grains and complex electric potential arising from the distribution of charges within a local plasma environment. Recent studies have shown that the positive column of the gas discharge plasma in the Plasmakristall-4 (PK-4) experiment at the International Space Station supports the presence of fast-moving ionization waves, which lead to variations of plasma parameters by up to an order of magnitude from the average background values. The highly variable environment resulting from ionization waves may have interesting implications for the dynamics and self-organization of dust particles, particularly concerning the formation and stability of dust chains. Here, we investigate the electric potential surrounding dust chains in the PK-4 experiment by employing a molecular dynamics model of the dust and ions with boundary conditions supplied by a particle-in-cell with Monte Carlo collision simulation of the ionization waves. The model is used to examine the effects of the plasma conditions within different regions of the ionization wave and compare the resulting dust structure to that obtained by employing the time-averaged plasma conditions. The comparison between simulated dust chains and experimental data from the PK-4 experiment shows that the time-averaged plasma conditions do not accurately reproduce observed results for dust behavior, indicating that more careful treatment of plasma conditions in the presence of ionization waves is required. It is further shown that commonly used analytic forms of the electric potential do not accurately describe the electric potential near charged dust grains under these plasma conditions. 
    more » « less