skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rethinking Work in the Age of Robots: Insights from the Construction Industry.
This research paper examines the transformative shift in the construction industry with the adoption of Construction 4.0 technologies, particularly robotics, and how these advancements impact the professional work values of construction personnel. The study employs a qualitative methodology, conducting semi-structured interviews with a diverse group of construction personnel, including both management and tradespeople, during a workshop where they interacted with construction robots. The effect of Construction 4.0 on professional work values in the construction industry has been insufficiently explored. The study provides new knowledge on the dual impacts of robot integration in construction, highlighting both the enhancement of certain professional work values and the challenges posed to others. Understanding these impacts is crucial for developing strategies that support both technological innovation and worker preparation. The study addresses the following research questions: How do construction personnel identify and describe the positive and negative impacts of robotic integration on specific professional work values? In what ways do participants perceive robots altering workplace dynamics and interpersonal relationships within the construction industry? What strategies do construction personnel suggest or foresee as necessary to mitigate the challenges posed by robotic integration? Using a qualitative research design, the study conducted semistructured interviews with construction personnel who participated in a hands-on workshop with robots. Content analysis, incorporating both inductive and deductive coding, was used to identify key patterns and categories. Limitations include the small sample size, limited demographics, and the specific context of the workshop setting. The integration of robots positively influences professional work values such as professional development, work productivity, mutual vision for work, control of work schedules, and work conditions by reducing physical strain and enhancing efficiency. Conversely, it negatively impacts values related to the interactive work environment, effective communication, sense of belonging, and job security, primarily due to reduced human interaction and fears of displacement. These findings highlight the critical need for industry leaders and educators to develop strategies that balance technological advancements with the preservation of positive work values. Comprehensive training programs, continuous professional development, and fostering an inclusive, adaptive work culture are essential. This study advances our understanding of the human side of technological integration and provides actionable recommendations for creating a balanced and resilient future workforce.  more » « less
Award ID(s):
2128415
PAR ID:
10573780
Author(s) / Creator(s):
;
Publisher / Repository:
2024 IEEE Frontiers in Education Conference (FIE)
Date Published:
Subject(s) / Keyword(s):
Professional Work values Technology Studies Civil Engineering Human-Robot Interaction Lifelong Learning
Format(s):
Medium: X
Location:
Washington, DC
Sponsoring Org:
National Science Foundation
More Like this
  1. Turkan, Y. and (Ed.)
    The construction industry has undergone a technological shift. Technology advancements have made robots a topic of discussion in construction. One challenge to overcome is how the robot receives information from designed BIM models. This study describes the methods employed for parametric modeling and generating model content of wall systems in Autodesk Revit added with a Dynamo script. Coordinates are determined for components based on model geometry and dimensions. Once generated, components are placed with the required material based on wall parameters. This research develops a method to add components based on wall materials from a traditionally modeled BIM extracting information such as location, object identifier (ID), type, and orientation which is formatted to transfer to the robot based on the needs of the robotic system as a list of tasks in a comma-separated values (.CSV) file. This study details the development process and early implementation of the Dynamo script. 
    more » « less
  2. The construction industry is known for its masculine culture where workplace discrimination, biases, and harassment exist. While interventions such as greater workplace diversity, equity and inclusion programs, and mentoring initiatives are directed toward fostering career engagement and employee retention, women continue to leave professional positions in the construction industry. Using an ethnographic methodology, the aim of this study was to identify and examine the dynamics involved in the perseverance of professional women working in the construction industry. In-depth interviews were conducted, and a qualitative approach toward gathering data was utilized. Consistent questions were posed to the participants primarily through synchronous communications, and specific construction companies and professional women employees were asked to participate. Results suggest that women in leadership positions who previously experienced harassment had male interventionists, and are now serving as the primary interventionists for younger women in their companies. Further results suggest increased women’s participation is realized by forming multiple supportive organizational structures within the construction workplace culture and enacting zero-tolerance guidelines to curb inappropriate or harassing behavior. These research findings underscore the need for further exploration of novel interventional mechanisms toward greater retention of women in the industry. 
    more » « less
  3. Desjardin, S. and (Ed.)
    The development of robotics in the Architecture, Engineering, and Construction (AEC) industry has emerged in recent years in response to technology advances and industry challenges such as workforce shortages. Construction robotics has the potential to increase construction productivity and accuracy as well as reduce accidents and costs. However, their introduction to construction sites creates new challenges. Previous studies have shown that robots can cause major changes in construction workflow, scope, and methods. Construction robotics introduce key changes to the work process and the sequence of construction tasks. The traditional planning approach for work break down structure and scheduling assigns resources for construction activities based on human labor and craft methods. Despite this, the capabilities of robotics relative to construction resource planning, sequencing, and work scope has not been fully studied. To address this, the implementation of robotics in construction projects needs a new approach to organizing work packages (WP). With the inclusion of robotics as a resource, planning parameters such as methods and sequence will change both the scope and accordingly the work packaging for construction. This paper aims to systematically identify the potential impacts of robots on construction processes, as well as how those changes influences work packaging. The methodology is based on data integration and content analysis from literature review and collected interviews with project participants about real-world construction projects. The paper discusses how construction robots impact the work package approach and categorizes the affected factors. These factors include the work area, sequence and priority of construction activities, safety management, allocation of risk responsibility for tasks, interaction with other trades, and required materials. 
    more » « less
  4. Robots present an innovative solution to the construction industry’s challenges, including safety concerns, skilled worker shortages, and productivity issues. Successfully collaborating with robots requires new competencies to ensure safety, smooth interaction, and accelerated adoption of robotic technologies. However, limited research exists on the specific competencies needed for human—robot collaboration in construction. Moreover, the perspectives of construction industry professionals on these competencies remain underexplored. This study examines the perceptions of construction industry professionals regarding the knowledge, skills, and abilities necessary for the effective implementation of human—robot collaboration in construction. A two-round Delphi survey was conducted with expert panel members from the construction industry to assess their views on the competencies for human—robot collaboration. The results reveal that the most critical competencies include knowledge areas such as human—robot interface, construction robot applications, human—robot collaboration safety and standards, task planning and robot control system; skills such as task planning, safety management, technical expertise, human—robot interface, and communication; and abilities such as safety awareness, continuous learning, problemsolving, critical thinking, and spatial awareness. This study contributes to knowledge by identifying the most significant competencies for human—robot collaboration in construction and highlighting their relative importance. These competencies could inform the design of educational and training programs and facilitate the integration of robotic technologies in construction. The findings also provide a foundation for future research to further explore and enhance these competencies, ultimately supporting safer, more efficient, and more productive construction practices. 
    more » « less
  5. Creating effective professional development is critical to support high school teachers who teach computer science (CS) online. The context of this study is based on a current Research to Practice Partnership (RPP) between the University of North Carolina at Charlotte in the United States and North Carolina Virtual Public School (NCVPS). Ten high school teachers from the NCVPS who teach CS online participated in a summer workshop and recommended design, facilitation, and evaluation strategies to be included in effective professional development (PD). The summer workshop was conducted synchronously via Zoom. It provided the opportunity to discuss teacher perceptions related to the research questions "What design, facilitation, and assessment strategies are helpful to include in an AP Computer Science Advanced course?" and "What recommendations do you have for designing an online professional development course for high school teachers to teach computer science online?" The questions were posed through an online collaborative Jamboard, and the affinity diagram method was used for data collection and document analysis was conducted. The teacher posts were qualitatively analyzed to identify common themes. Findings for professional development on content design included CS content, how to teach CS, and CS tools and activities. For assessment, they recommended content knowledge assessments, including lab assignments, single and pair programming, and coding assessments. They recommended tools for supplemental instruction, integration of discussion boards for interaction, and tools and strategies to provide feedback for professional development. 
    more » « less