skip to main content


Title: Development of a parametric modeling method for masonry wall systems to support robotic construction
The construction industry has undergone a technological shift. Technology advancements have made robots a topic of discussion in construction. One challenge to overcome is how the robot receives information from designed BIM models. This study describes the methods employed for parametric modeling and generating model content of wall systems in Autodesk Revit added with a Dynamo script. Coordinates are determined for components based on model geometry and dimensions. Once generated, components are placed with the required material based on wall parameters. This research develops a method to add components based on wall materials from a traditionally modeled BIM extracting information such as location, object identifier (ID), type, and orientation which is formatted to transfer to the robot based on the needs of the robotic system as a list of tasks in a comma-separated values (.CSV) file. This study details the development process and early implementation of the Dynamo script.  more » « less
Award ID(s):
1928626
PAR ID:
10466064
Author(s) / Creator(s):
Editor(s):
Turkan, Y. and
Date Published:
Journal Name:
ASCE International Conference on Computing in Civil Engineering
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Desjardin, S. and (Ed.)
    Building Information Modeling (BIM) is a critical data source for constructing new structures depicting the inner workings of the systems and components in detail. However, current modeling practices are based on traditional construction methods, resulting in insufficient details within the BIM model to support robotic construction for many building systems. The model’s level of development (LOD) needs to be increased to facilitate the changes in data requirements. One method that allows for increased LOD is computational modeling; however, many factors can influence the process. Therefore, this study investigates challenges for implementation to increase the LOD for building to enable robotic construction. Dynamo is used as the computational modeling software in conjunction with Autodesk Revit to accomplish this. A process was created to place various components, such as concrete masonry units (CMUs), in their final design location and extract information utilizing these platforms for masonry construction. However, challenges were met during this process, including material naming conventions, tolerance/specification inputs, wall openings/lintels, and component/material libraries. The challenges presented during the implementation of the Dynamo mirror what the literature shows for supporting technological infrastructure BIM and mobile robot construction. To accomplish this research, an extensive literature review was completed, along with documentation of challenges during the development and implementation of the script. 
    more » « less
  2. Building information modeling (BIM) technology in construction has become increasingly prevalent in recent years, and integrating robotics is seen as a natural step to improve efficiency. To increase the level of development (LOD) of a BIM model to support a construction robot, parametric modeling can be used to create highly detailed models by supplementing and defining the geometric and physical properties of the construction elements, such as the components’ size, shape, and material parameters, which are used as inputs for designing robotic tasks. Component information and data are stored as extractable parameters within the BIM model, allowing a robot to perform highly precise and repeatable tasks. This study develops a framework for implementing computational parametric modeling for masonry wall systems with Dynamo. This study tested six wall configurations constructed of 8″ × 8″ × 16″ concrete masonry units (CMUs). Dynamo successfully interpreted most wall geometries placing full-sized CMUs into the correct design locations. Errors occurred when placing partial-sized CMUs, typically at wall intersections, revealing a need for future refinement. The study shows the careful planning and considerations needed to implement computational modeling to generate model content for creating robotic tasks. 
    more » « less
  3. In recent decades, the construction industry has undergone a technological shift incorporating innovative technologies, such as robotics. However, information requirements must be met to integrate robotics further. Currently, building information models (BIM) contain substantial project information that can be leveraged for robots to create construction tasks, but for some building systems, the level of development (LOD) is inadequate to support these new requirements. Therefore, this study proposes a framework to increase the LOD of building systems by considering location information (X, Y, Z), orientation, material type, and component I.D. The computational modeler, Dynamo, is leveraged to increase the model’s LOD, extract information, and facilitate robotic task execution in the future. A case study is presented for multiple masonry room configurations developed in Autodesk Revit, where masonry units are generated and placed into design locations based on the geometry of the wall system. The case study used concrete masonry units (CMU) and standard brick. The number of partial-sized and full-sized blocks for each configuration was recorded, along with the computational time required to generate the units. It was observed that room configurations with more openings had longer computational times when compared to rooms constructed from the same material. After running the script, the model is reviewed to ensure accuracy and prevent overlaps or gaps in the model. The workflow provides insight into the methods used to interpret model geometry and extract information.

     
    more » « less
  4. In the past, the construction industry has been slow to adopt new technology. There has been a rapid expansion of technologies, often referred to as Industry 4.0, to aid in the use of automation. One challenge paralleling these new technologies is implementing how a robot interprets design information, specifically information from a Building Information Model (BIM). This paper presents a method for identifying and transforming information from BIM to support robotic material placement on the construction site. This research will include a review of what information can be directly extracted from the model and what must be supplemented to the model for the robot to perform defined tasks within a construction site. The construction sites’ dynamic nature poses multiple challenges that must be addressed for the information extracted from a model to be used by a robot in daily construction operations. This research also identifies barriers and limitations based upon current practice, such as different levels of development or model content as well as needed precision within the information provided for a mobile robot to complete a defined task. 
    more » « less
  5. Advances in robotics represent a potential shift in the construction industry. Construction planning is planned based on craft work; it is necessary to emphasize external factors such as construction robotics. Improving constructability can enhance design-phase construction opportunities, thereby expanding the potential scope of robot operations. However, robotics are often neglected concerning constructability. Previous studies on constructability concentrated on human-based construction methods; hence, gaps remain in assessing constructability for robotics. To minimize the barriers in robotic construction, this paper presents a method for using a rule-based framework for robotic constructability assessment checks with the help of BIM. Focusing on CANVAS—a drywall finishing robot—this paper applies a BIM-based object-oriented model integrating with ROS to utilize constructability reasoning about robotic operations. A model of rule-checking for robotics in the case study is demonstrated and tested. The availability of design information in the model containing robotics is discussed, showing the need for assessing robotics-related constructability information to support an automated review of robotic constructability assessment. This paper applies a case study to validate use of the framework for robotic constructability assessment in the design phase, leading to an automated constructability assessment of construction robotics. 
    more » « less