Abstract The piezoelectric and ferroelectric applications of heterovalent ternary materials are not well explored. Epitaxial MgSiN2films are grown at 600 °C on (111)Pt//(001)Al2O3substrates by the reactive sputtering method using metallic Mg and Si under the N2atmosphere. Detailed X‐ray diffraction measurements and transmission electron microscopy observations revealed that the epitaxially grown films on the substrates have a hexagonal wurtzite structure withc‐axis out‐of‐plane orientation. The random occupation of this structure by Mg and Si differs from that of the previously reported structure in which these two cations periodically occupy the cationic sites. However, the lattice spacings closely approximate those that are previously reported, irrespective of the ordering, and they are almost comparable with those of (Al0.8Sc0.2)N. The wide bandgap of >5.0 eV in deposited MgSiN2is compatible with that of AlN and suggests durability against the application of strong external electric fields, possibly to induce polarization switching. In addition, MgSiN2is shown to have piezoelectric properties with an effectived33value of 2.3 pm V−1for the first time. This work demonstrates the compositional expansion of hexagonal wurtzite to heterovalent ternary nitrides for novel piezoelectric materials, whose ferroelectricity is expected.
more »
« less
Unlocking Electrostrain in Plastically Deformed Barium Titanate
Abstract Achieving substantial electrostrain alongside a large effective piezoelectric strain coefficient (d33*) in piezoelectric materials remains a formidable challenge for advanced actuator applications. Here, a straightforward approach to enhance these properties by strategically designing the domain structure and controlling the domain switching through the introduction of arrays of ordered {100}<100> dislocations is proposed. This dislocation engineering yields an intrinsic lock‐in steady–state electrostrain of 0.69% at a low field of 10 kV cm−1without external stress and an output strain energy density of 5.24 J cm−3in single‐crystal BaTiO3, outperforming the benchmark piezoceramics and relaxor ferroelectric single‐crystals. Additionally, applying a compression stress of 6 MPa fully unlocks electrostrains exceeding 1%, yielding a remarkabled33* value over 10 000 pm V−1and achieving a record‐high strain energy density of 11.67 J cm−3. Optical and transmission electron microscopy, paired with laboratory and synchrotron X‐ray diffraction, is employed to rationalize the observed electrostrain. Phase‐field simulations further elucidate the impact of charged dislocations on domain nucleation and domain switching. These findings present an effective and sustainable strategy for developing high‐performance, lead‐free piezoelectric materials without the need for additional chemical elements, offering immense potential for actuator technologies.
more »
« less
- Award ID(s):
- 2133373
- PAR ID:
- 10573839
- Publisher / Repository:
- Wiley, Wiley-VCH
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 36
- Issue:
- 52
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Iron-based 1111-type superconductors display high critical temperatures and relatively high critical current densitiesJc. The typical approach to increasingJcis to introduce defects to control dissipative vortex motion. However, when optimized, this approach is theoretically predicted to be limited to achieving a maximumJcof only ∼30% of the depairing current densityJd, which depends on the coherence length and the penetration depth. Here we dramatically boostJcin SmFeAsO1–xHxfilms using a thermodynamic approach aimed at increasingJdand incorporating vortex pinning centres. Specifically, we reduce the penetration depth, coherence length and critical field anisotropy by increasing the carrier density through high electron doping using H substitution. Remarkably, the quadrupledJdreaches 415 MA cm–2, a value comparable to cuprates. Finally, by introducing defects using proton irradiation, we obtain highJcvalues in fields up to 25 T. We apply this method to other iron-based superconductors and achieve a similar enhancement of current densities.more » « less
-
Abstract Multifunctionality as a paradigm requires materials exhibiting multiple superior properties. Integrating second‐order optical nonlinearity and large bandgap with piezoelectricity can, for example, enable broadband, strain‐tunable photonics. Though very different phenomena at distinct frequencies, both second‐order optical nonlinearity and piezoelectricity are third‐rank polar tensors present only in acentric crystal structures. However, simultaneously enhancing both phenomena is highly challenging since it involves competing effects with tradeoffs. Recently, a large switchable ferroelectric polarization of ≈80 μC cm−2was reported in Zn1‐xMgxO films. Here, ferroelectric Zn1‐xMgxO is demonstrated to be a platform that hosts simultaneously a 30% increase in the electronic bandgap, a 50% enhancement in the second harmonic generation (SHG) coefficients, and a near 200% improvement in the piezoelectric coefficients over pure ZnO. These enhancements are shown to be due to a 400% increase in the electronic anharmonicity and a ≈200% decrease in the ionic anharmonicity with Mg substitution. Precisely controllable periodic ferroelectric domain gratings are demonstrated down to 800 nm domain width, enabling ultraviolet quasi‐phase‐matched optical harmonic generation as well as domain‐engineered piezoelectric devices.more » « less
-
The effect of an electric field on local domain structure near a 24° tilt grain boundary in a 200 nm-thick Pb(Zr0.2Ti0.8)O3bi-crystal ferroelectric film was probed using synchrotron nanodiffraction. The bi-crystal film was grown epitaxially on SrRuO3-coated (001) SrTiO324° tilt bi-crystal substrates. From the nanodiffraction data, real-space maps of the ferroelectric domain structure around the grain boundary prior to and during application of a 200 kV cm−1electric field were reconstructed. In the vicinity of the tilt grain boundary, the distributions of densities ofc-type tetragonal domains with thecaxis aligned with the film normal were calculated on the basis of diffracted intensity ratios ofc- anda-type domains and reference powder diffraction data. Diffracted intensity was averaged along the grain boundary, and it was shown that the density ofc-type tetragonal domains dropped to ∼50% of that of the bulk of the film over a range ±150 nm from the grain boundary. This work complements previous results acquired by band excitation piezoresponse force microscopy, suggesting that reduced nonlinear piezoelectric response around grain boundaries may be related to the change in domain structure, as well as to the possibility of increased pinning of domain wall motion. The implications of the results and analysis in terms of understanding the role of grain boundaries in affecting the nonlinear piezoelectric and dielectric responses of ferroelectric materials are discussed.more » « less
-
Abstract Ultrathin 2D metal oxides are a high‐performance class of transparent conducting materials capable of overcoming the traditional limitations of inorganic flexible electronics. The low temperature, thermodynamically favorable synthesis of 2D oxides at liquid metal interfaces offers the potential for printing these materials over large areas at unprecedented speeds with sub‐nanometer scale precision. However, these native oxides are sub‐stoichiometric and highly conductive, so new strategies are needed that can precisely engineer the electrostatics and enhance stability. In this work, the crystalline vs. amorphous phase of 2D oxides is engineered via alloying of ternary In1‐ySnyOxand ultralow deposition temperatures (120–160 °C) are afforded by In‐Sn eutectics. This approach is extended to rapid assembly of nanoscale (3–5 nm per layer) vertical 2D homojunctions with electrostatically favorable grading from high density of states front channels to lower density of states back‐channels. Detailed materials characterization reveals how this platform enhances electron mobility while improving resilience under bias‐stress in metal oxide transistors. Devices based on amorphous 2D oxide homojunctions with high‐k sol‐gel ZrOxdielectrics achieve excellent electron mobility (30 cm2/V·s), steep switching (SS of 100 mV dec−1), Ion/offof 107and 10X reduced bias‐stress shifts, presenting an ideal strategy for high‐performance flexible oxide electronics.more » « less
An official website of the United States government

