skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 2, 2025

Title: What Is a Plant Cell Type in the Age of Single-Cell Biology? It's Complicated
One of the fundamental questions in developmental biology is how a cell is specified to differentiate as a specialized cell type. Traditionally, plant cell types were defined based on their function, location, morphology, and lineage. Currently, in the age of single-cell biology, researchers typically attempt to assign plant cells to cell types by clustering them based on their transcriptomes. However, because cells are dynamic entities that progress through the cell cycle and respond to signals, the transcriptome also reflects the state of the cell at a particular moment in time, raising questions about how to define a cell type. We suggest that these complexities and dynamics of cell states are of interest and further consider the roles signaling, stochasticity, cell cycle, and mechanical forces play in plant cell fate specification. Once established, cell identity must also be maintained. With the wealth of single-cell data coming out, the field is poised to elucidate both the complexity and dynamics of cell states.  more » « less
Award ID(s):
2203275 1553030 2222434
PAR ID:
10573850
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Annual Review of Cell and Developmental Biology
Date Published:
Journal Name:
Annual Review of Cell and Developmental Biology
Volume:
40
Issue:
1
ISSN:
1081-0706
Page Range / eLocation ID:
301 to 328
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As scientists, we are at least as excited about the open questions—the things we do not know—as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such “rules” conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring. 
    more » « less
  2. SUMMARY Cis‐regulatory elements (CREs) are important sequences for gene expression and for plant biological processes such as development, evolution, domestication, and stress response. However, studying CREs in plant genomes has been challenging. The totipotent nature of plant cells, coupled with the inability to maintain plant cell types in culture and the inherent technical challenges posed by the cell wall has limited our understanding of how plant cell types acquire and maintain their identities and respond to the environment via CRE usage. Advances in single‐cell epigenomics have revolutionized the field of identifying cell‐type‐specific CREs. These new technologies have the potential to significantly advance our understanding of plant CRE biology, and shed light on how the regulatory genome gives rise to diverse plant phenomena. However, there are significant biological and computational challenges associated with analyzing single‐cell epigenomic datasets. In this review, we discuss the historical and foundational underpinnings of plant single‐cell research, challenges, and common pitfalls in the analysis of plant single‐cell epigenomic data, and highlight biological challenges unique to plants. Additionally, we discuss how the application of single‐cell epigenomic data in various contexts stands to transform our understanding of the importance of CREs in plant genomes. 
    more » « less
  3. SUMMARY As sessile organisms, plants are finely tuned to respond dynamically to developmental, circadian and environmental cues. Genome‐wide studies investigating these types of cues have uncovered the intrinsically different ways they can impact gene expression over time. Recent advances in single‐cell sequencing and time‐based bioinformatic algorithms are now beginning to reveal the dynamics of these time‐based responses within individual cells and plant tissues. Here, we review what these techniques have revealed about the spatiotemporal nature of gene regulation, paying particular attention to the three distinct ways in which plant tissues are time sensitive. (i) First, we discuss how studying plant cell identity can reveal developmental trajectories hidden in pseudotime. (ii) Next, we present evidence that indicates that plant cell types keep their own local time through tissue‐specific regulation of the circadian clock. (iii) Finally, we review what determines the speed of environmental signaling responses, and how they can be contingent on developmental and circadian time. By these means, this review sheds light on how these different scales of time‐based responses can act with tissue and cell‐type specificity to elicit changes in whole plant systems. 
    more » « less
  4. Abstract Single-cell technologies can measure the expression of thousands of molecular features in individual cells undergoing dynamic biological processes. While examining cells along a computationally-ordered pseudotime trajectory can reveal how changes in gene or protein expression impact cell fate, identifying such dynamic features is challenging due to the inherent noise in single-cell data. Here, we present DELVE, an unsupervised feature selection method for identifying a representative subset of molecular features which robustly recapitulate cellular trajectories. In contrast to previous work, DELVE uses a bottom-up approach to mitigate the effects of confounding sources of variation, and instead models cell states from dynamic gene or protein modules based on core regulatory complexes. Using simulations, single-cell RNA sequencing, and iterative immunofluorescence imaging data in the context of cell cycle and cellular differentiation, we demonstrate how DELVE selects features that better define cell-types and cell-type transitions. DELVE is available as an open-source python package:https://github.com/jranek/delve. 
    more » « less
  5. Abstract Echinoderms produce functional gametes throughout their lifespan, in some cases exceeding 200 years. The histology and ultrastructure of echinoderm ovaries has been described but how these ovaries function and maintain the production of high‐quality gametes remains a mystery. Here, we present the first single cell RNA sequencing data sets of mature ovaries from two sea urchin species (Strongylocentrotus purpuratus [Sp]andLytechinus variegatus [Lv]), and one sea star species (Patiria miniata [Pm]). We find 14 cell states in the Sp ovary, 16 cell states in the Lv ovary and 13 cell states in the ovary of the sea star. This resource is essential to understand the structure and functional biology of the ovary in echinoderms, and better informs decisions in the utilization of in situ RNA hybridization probes selective for various cell types. We link key genes with cell clusters in validation of this approach. This resource also aids in the identification of the stem cells for prolonged and continuous gamete production, is a foundation for testing changes in the annual reproductive cycle, and is essential for understanding the evolution of reproduction of this important phylum. 
    more » « less