The competition between the radiative and nonradiative lifetimes determines the optical quantum yield and plays a crucial role in the potential optoelectronic applications of transition metal dichalcogenides (TMDCs). Here, we show that, in the presence of free carriers, an additional nonradiative decay channel opens for excitons in TMDC monolayers. Although the usual Auger decay channel is suppressed at low doping levels by the simultaneous momentum and energy conservation laws, exciton–phonon coupling relaxes this suppression. By solving a Bethe–Salpeter equation, we calculate the phonon-assisted Auger decay rates in four typical TMDCs as a function of doping, temperature, and dielectric environment. We find that even for a relatively low doping of 1012 cm−2, the nonradiative lifetime ranges from 16 to 165 ps in different TMDCs, offering competition to the radiative decay channel.
more »
« less
Exciton Dynamics in 2D Transition Metal Dichalcogenides
Abstract 2D transition metal dichalcogenides (TMDCs) have emerged as a promising class of materials for broad applications. The physical properties of TMDCs are dominated by strong excitonic effects, which critically determine the performance of photonic and optoelectronic devices. In this Review, the current state of research on exciton dynamics in TMDCs is summarized, discussed common optical characterization techniques, and analyzed factors that influence exciton behaviors, such as thickness, dielectric environment, strain, and heterostructure configuration. Throughout this work, the challenges and opportunities for future research in this rapidly evolving field are also highlighted.
more »
« less
- Award ID(s):
- 2416149
- PAR ID:
- 10573903
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 13
- Issue:
- 11
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Monolayer-like Exciton Recombination Dynamics of Multilayer MoSe 2 Observed by Pump–Probe MicroscopyTransition metal dichalcogenides (TMDCs) have garnered considerable interest over the past decade as a class of semiconducting layered materials. Most studies on the carrier dynamics in these materials have focused on the monolayer due to its direct bandgap, strong photoluminescence, and strongly bound excitons. However, a comparative understanding of the carrier dynamics in multilayer (e.g., >10 layers) flakes is still absent. Recent computational studies have suggested that excitons in bulk TMDCs are confined to individual layers, leading to room-temperature stable exciton populations. Using this new context, we explore the carrier dynamics in MoSe2 flakes that are between ∼16 and ∼125 layers thick. We assign the kinetics to exciton–exciton annihilation (EEA) and Shockley–Read–Hall recombination of free carriers. Interestingly, the average observed EEA rate constant (0.003 cm2/s) is nearly independent of flake thickness and 2 orders of magnitude smaller than that of an unencapsulated monolayer (0.33 cm2/s) but very similar to values observed in encapsulated monolayers. Thus, we posit that strong intralayer interactions minimize the effect of layer thickness on recombination dynamics, causing the multilayer to behave like the monolayer and exhibit an apparent EEA rate intrinsic to MoSe2.more » « less
-
Strain engineering is a powerful tool in designing artificial platforms for high-temperature excitonic quantum devices. Combining strong light-matter interaction with robust and mobile exciton quasiparticles, two-dimensional transition metal dichalcogenides (2D TMDCs) hold great promise in this endeavor. However, realizing complex excitonic architectures based on strain-induced electronic potentials alone has proven to be exceptionally difficult so far. Here, we demonstrate deterministic strain engineering of both single-particle electronic bandstructure and excitonic many-particle interactions. We create quasi-1D transport channels to confine excitons and simultaneously enhance their mobility through locally suppressed exciton-phonon scattering. Using ultrafast, all-optical injection and time-resolved readout, we realize highly directional exciton flow with up to 100% anisotropy both at cryogenic and room temperatures. The demonstrated fundamental modification of the exciton transport properties in a deterministically strained 2D material with effectively tunable dimensionality has broad implications for both basic solid-state science and emerging technologies.more » « less
-
Abstract Moiré coupling in transition metal dichalcogenides (TMDCs) superlattices introduces flat minibands that enable strong electronic correlation and fascinating correlated states, and it also modifies the strong Coulomb-interaction-driven excitons and gives rise to moiré excitons. Here, we introduce the layer degree of freedom to the WSe2/WS2moiré superlattice by changing WSe2from monolayer to bilayer and trilayer. We observe systematic changes of optical spectra of the moiré excitons, which directly confirm the highly interfacial nature of moiré coupling at the WSe2/WS2interface. In addition, the energy resonances of moiré excitons are strongly modified, with their separation significantly increased in multilayer WSe2/monolayer WS2moiré superlattice. The additional WSe2layers also modulate the strong electronic correlation strength, evidenced by the reduced Mott transition temperature with added WSe2layer(s). The layer dependence of both moiré excitons and correlated electronic states can be well described by our theoretical model. Our study presents a new method to tune the strong electronic correlation and moiré exciton bands in the TMDCs moiré superlattices, ushering in an exciting platform to engineer quantum phenomena stemming from strong correlation and Coulomb interaction.more » « less
-
Abstract Monolayer transition-metal dichalcogenides (TMDCs) show a wealth of exciton physics. Here, we report the existence of a new excitonic species, the high-lying exciton (HX), in single-layer WSe 2 with an energy of ~3.4 eV, almost twice the band-edge A-exciton energy, with a linewidth as narrow as 5.8 meV. The HX is populated through momentum-selective optical excitation in the K -valleys and is identified in upconverted photoluminescence (UPL) in the UV spectral region. Strong electron-phonon coupling results in a cascaded phonon progression with equidistant peaks in the luminescence spectrum, resolvable to ninth order. Ab initio GW -BSE calculations with full electron-hole correlations explain HX formation and unmask the admixture of upper conduction-band states to this complex many-body excitation. These calculations suggest that the HX is comprised of electrons of negative mass. The coincidence of such high-lying excitonic species at around twice the energy of band-edge excitons rationalizes the excitonic quantum-interference phenomenon recently discovered in optical second-harmonic generation (SHG) and explains the efficient Auger-like annihilation of band-edge excitons.more » « less
An official website of the United States government
