Structural diversity is a key feature of forest ecosystems that influences ecosystem functions from local to macroscales. The ability to measure structural diversity in forests with varying ecological composition and management history can improve the understanding of linkages between forest structure and ecosystem functioning. Terrestrial LiDAR has often been used to provide a detailed characterization of structural diversity at local scales, but it is largely unknown whether these same structural features are detectable using aerial LiDAR data that are available across larger spatial scales. We used univariate and multivariate analyses to quantify cross-compatibility of structural diversity metrics from terrestrial versus aerial LiDAR in seven National Ecological Observatory Network sites across the eastern USA. We found strong univariate agreement between terrestrial and aerial LiDAR metrics of canopy height, openness, internal heterogeneity, and leaf area, but found marginal agreement between metrics that described heterogeneity of the outermost layer of the canopy. Terrestrial and aerial LiDAR both demonstrated the ability to distinguish forest sites from structural diversity metrics in multivariate space, but terrestrial LiDAR was able to resolve finer-scale detail within sites. Our findings indicated that aerial LiDAR could be of use in quantifying broad-scale variation in structural diversity across macroscales. 
                        more » 
                        « less   
                    
                            
                            Gradient surface metrics of ecosystem structural diversity and their relationship with productivity across macrosystems
                        
                    
    
            Abstract Structural diversity—the volume and physical arrangement of vegetation within the three‐dimensional (3D) space of ecosystems—is a predictor of ecosystem function that can be measured at large scales with remote sensing. However, the landscape composition and configuration of structural diversity across macrosystems have not been well described. Using a relatively recently developed method to quantify landscape composition and configuration of continuous habitat or terrain, we propose the application of gradient surface metrics (GSMs) to quantify landscape patterns of structural diversity and provide insights into how its spatial pattern relates to ecosystem function. We first applied an example set of GSMs that represent landscape heterogeneity, dominance, and edge density to Lidar‐derived structural diversity within 28 forested landscapes at National Ecological Observatory Network (NEON) sites. Second, we tested for forest type, geographic location, and climate drivers of macroscale variation in GSMs of structural diversity (GSM‐SD). Third, we demonstrated the utility of these metrics for understanding spatial patterns of ecosystem function in a case study with NDVI, a proxy of productivity. We found that GSM‐SD varied in landscapes within macrosystems, with forest type, geographic location, and climate being significantly related to some but not all metrics. We also found that dominance of high peaks of height and vertical complexity of canopy vegetation and the heterogeneity of the vertical complexity and coefficient of variation of canopy vegetation height within 120‐m patches were negatively correlated with NDVI across the 28 NEON sites. However, forest type always had a significant interaction term between these GSM‐SD and NDVI relationships. Our study demonstrates that GSMs are useful to describe the landscape composition and configuration of structural diversity and its relationship with productivity that warrants further consideration for spatially motivated management decisions. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10573940
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 16
- Issue:
- 2
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Vegetation structural complexity and biodiversity tend to be positively correlated, but understanding of this relationship is limited in part by structural metrics tending to quantify only horizontal or vertical variation, and that do not reflect internal structure. We developed new metrics for quantifying internal vegetation structural complexity using terrestrial LiDAR scanning and applied them to 12 NEON forest plots across an elevational gradient in Great Smoky Mountains National Park, USA. We asked (1) How do our newly developed structure metrics compare to traditional metrics? (2) How does forest structure vary with elevation in a high‐biodiversity, high topographic complexity region? (3) How do forest structural metrics vary in the strength of their relationships with vascular plant biodiversity? Our new measures of canopy density (Depth) and structural complexity (σDepth), and their canopy height‐normalized counterparts, were sensitive to structural variations and effectively summarized horizontal and vertical dimensions of structural complexity. Forest structure varied widely across plots spanning the elevational range of GRSM, with taller, more structurally complex forests at lower elevation. Vascular plant biodiversity was negatively correlated with elevation and more strongly positively correlated with vegetation structure variables. The strong correlations we observed between canopy structural complexity and biodiversity suggest that structural complexity metrics could be used to assay plant biodiversity over large areas in concert with airborne and spaceborne platforms.more » « less
- 
            The species – area relationship (SAR) is a common pattern in which diversity increases with the area sampled, but ecosystems are three‐dimensional (3D) and diversity – volume relationships (DVRs) may exist in ecosystems that vary substantially in their vegetation volume. We tested whether forest vegetation volume, as a 3D extension of area in SARs, was a significant predictor of taxonomic (species) and structural (arrangement) diversity in five groups of organisms across the National Ecological Observatory Network (NEON). Vegetation volume and four structural arrangement metrics within the area of NEON plots were measured using NEON's discrete return lidar. Species richness was measured as the number of species within the respective NEON plot sampling area for understory plants, trees, breeding land birds, small mammals, and ground beetles. We found that volume negatively predicted understory plants and positively predicted tree and beetle species richness across the USA forest macrosystem, but not bird and small mammal species richness. Furthermore, volume was a significant predictor of several metrics that describe the internal and external heterogeneity of vegetation in forests (structural arrangement) within the ecosystem across the USA forest macrosystem. There were several significant within site‐level relationships, but not at all sites, between volume and species richness or structural arrangement in organism groups. Our study indicates that previous work that has focused on a 2D conceptualization of habitat can be expanded to 3D habitat space, but that the strength and the positive or negative direction of DVRs may vary taxonomically or geographically.more » « less
- 
            Abstract Understanding the determinants of urban forest diversity and structure is important for preserving biodiversity and sustaining ecosystem services in cities. However, comprehensive field assessments are resource‐intensive, and landscape‐level approaches may overlook heterogeneity within urban regions. To address this challenge, we combined remote sensing with field inventories to comprehensively map and analyze urban forest attributes in forest patches across the Minneapolis‐St. Paul Metropolitan Area (MSPMA) in a multistep process. First, we developed predictive machine learning models of forest attributes by integrating data from forest inventories (from 40 12.5‐m‐radius plots) with Global Ecosystem Dynamics Investigation (GEDI) observations and Sentinel‐2‐derived land surface phenology (LSP). These models enabled accurate predictions of forest attributes, specifically nine metrics of plant diversity (tree species richness, tree abundance, and understory plant abundance), structure (average canopy height, dbh, and canopy density), and structural complexity (variability in canopy height, dbh, and canopy density) with relative errors ranging between 11% and 21%. Second, we applied these machine learning models to predict diversity metrics for 804 additional plots from GEDI and Sentinel‐2. Finally, we applied Bayesian multilevel models to the predicted diversity metrics to assess the influence of multiple factors—patch dimensions, landscape attributes, plot position, and jurisdictional agency—on these forest attributes across the 804 predicted plots. The models showed all predictors have some degree of effect on forest attributes, presenting varying explanatory power withR2values ranging from 0.071 to 0.405. Overall, plot characteristics (e.g., distance to nearest trail, proximity to forest edge) and jurisdictional agency explained a large portion of the variability across patches, whereas patch and landscape characteristics did not. The relative effect of plot versus management sets of predictors on the marginal ΔR2was heterogeneous across metrics and ecological subsections (an ecological classification designation). The multiplicity of determinants influencing urban forests emphasizes the intricate nature of urban ecosystems and highlights nuanced, heterogeneous relationships between urban ecological and anthropogenic factors that determine forest properties. Effectively enhancing biodiversity in urban forests requires assessments, management, and conservation strategies tailored for context‐specific characteristics.more » « less
- 
            Abstract Efforts to catalog global biodiversity have often focused on aboveground taxonomic diversity, with limited consideration of belowground communities. However, diversity aboveground may influence the diversity of belowground communities and vice versa. In addition to taxonomic diversity, the structural diversity of plant communities may be related to the diversity of soil bacterial and fungal communities, which drive important ecosystem processes but are difficult to characterize across broad spatial scales. In forests, canopy structural diversity may influence soil microorganisms through its effects on ecosystem productivity and root architecture, and via associations between canopy structure, stand age, and species richness. Given that structural diversity is one of the few types of diversity that can be readily measured remotely (e.g., using light detection and ranging—LiDAR), establishing links between structural and microbial diversity could facilitate the detection of belowground biodiversity hotspots. We investigated the potential for using remotely sensed information about forest structural diversity as a predictor of soil microbial community richness and composition. We calculated LiDAR‐derived metrics of structural diversity as well as a suite of stand and soil properties from 38 forested plots across the central hardwoods region of Indiana, USA, to test whether forest canopy structure is linked with the community richness and diversity of four key soil microbial groups: bacteria, fungi, arbuscular mycorrhizal (AM) fungi, and ectomycorrhizal (EM) fungi. We found that the density of canopy vegetation is positively associated with the taxonomic richness (alpha diversity) of EM fungi, independent of changes in plant taxonomic richness. Further, structural diversity metrics were significantly correlated with the overall community composition of bacteria, EM, and total fungal communities. However, soil properties were the strongest predictors of variation in the taxonomic richness and community composition of microbial communities in comparison with structural diversity and tree species diversity. As remote sensing tools and algorithms are rapidly advancing, these results may have important implications for the use of remote sensing of vegetation structural diversity for management and restoration practices aimed at preserving belowground biodiversity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
