skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extended metric validation of a semi-physical Space Weather Modeling Framework conductance model on field-aligned current estimations
In this study, a detailed metric survey on the “Galaxy 15” (April 2010) space weather event is conducted to validate MAGNetosphere–Ionosphere–Thermosphere (MAGNIT), a semi-physical auroral ionospheric conductance model characterizing four precipitation sources, against AMPERE measurements via field-aligned current (FAC) characteristics. As part of this study, the comparative performance of three ionosphere electrodynamic specifications involving auroral conductance models, MAGNIT, Ridley Legacy Model (RLM) (empirical), and Conductance Model for Extreme Events (CMEE) (empirical), within the Space Weather Modeling Framework (SWMF), is demonstrated. Overall, MAGNIT exhibits marginally improved predictions; root mean square error values in upward and downward FACs of MAGNIT predictions compared to AMPERE data are smaller than those of CMEE and Ridley Ionosphere Model (RIM) by 12.7% and 6.24% before the storm, 4.52% and 2.13% better during the main phase, 1.98% and 1.27% worse during the second minimum, and better by 1.84% and 1.49% by the beginning of the recovery, respectively. In all three model configurations, the dusk and night magnetic local time (MLT) sectors over-predict throughout the storm, while the day and dawn MLT sectors under-predict in response to interplanetary magnetic field (IMF) conditions. In addition to accuracy and bias, similar results and conclusions are drawn from additional metrics, including in the categories of correlation, precision, extremes, and skill, and recommendations are made for the best-performing model configuration in each metric category. Visual data–model comparisons conducted by studying the FAC location and latitude/MLT spread throughout various phases of the storm suggest that the spatial extent of the FACs is captured relatively well in the night-side auroral oval, unlike in the day-side oval. The spread in latitude of the FACs matches that in the previous literature on other model performances. This information on auroral precipitation sources and their weight on FACs, along with metrics from model–data comparisons, can be used to modify MAGNIT settings to optimize SWMF model performance.  more » « less
Award ID(s):
1663885 2002574
PAR ID:
10574077
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Frontiers in Astronomy and Space Sciences
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
11
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ionospheric conductance is a crucial factor in regulating the closure of magnetospheric field‐aligned currents through the ionosphere as Hall and Pedersen currents. Despite its importance in predictive investigations of the magnetosphere‐ionosphere coupling, the estimation of ionospheric conductance in the auroral region is precarious in most global first‐principles‐based models. This impreciseness in estimating the auroral conductance impedes both our understanding and predictive capabilities of the magnetosphere‐ionosphere system during extreme space weather events. In this article, we address this concern, with the development of an advanced Conductance Model for Extreme Events (CMEE) that estimates the auroral conductance from field‐aligned current values. CMEE has been developed using nonlinear regression over a year's worth of 1‐min resolution output from assimilative maps, specifically including times of extreme driving of the solar wind‐magnetosphere‐ionosphere system. The model also includes provisions to enhance the conductance in the aurora using additional adjustments to refine the auroral oval. CMEE has been incorporated within the Ridley Ionosphere Model (RIM) of the Space Weather Modeling Framework (SWMF) for usage in space weather simulations. This paper compares performance of CMEE against the existing conductance model in RIM, through a validation process for six space weather events. The performance analysis indicates overall improvement in the ionospheric feedback to ground‐based space weather forecasts. Specifically, the model is able to improve the prediction of ionospheric currents, which impact the simulateddB/dtandΔB, resulting in substantial improvements indB/dtpredictive skill. 
    more » « less
  2. Abstract The effect of storms driven by solar wind high‐speed streams (HSSs) on the high‐latitude ionosphere is inadequately understood. We study the ionosphericF‐region during a moderate magnetic storm on 14 March 2016 using the EISCAT Tromsø and Svalbard radar latitude scans. AMPERE field‐aligned current (FAC) measurements are also utilized. Long‐duration 5‐day electron density depletions (20%–80%) are the dominant feature outside of precipitation‐dominated midnight and morning sectors. Depletions are found in two major regions. In the afternoon to evening sector (12–21 magnetic local time, MLT) the depleted region is 10–18 magnetic latitude (MLAT) in width, with the largest latitudinal extent 62–80 MLAT in the afternoon. The second region is in the morning to pre‐noon sector (04–10 MLT), where the depletion region occurs at 72–80 MLAT within the auroral oval and extends to the polar cap. Using EISCAT ion temperature and ion velocity data, we show that local ion‐frictional heating is observed roughly in 50% of the depleted regions with ion temperature increase by 200 K or more. For the rest of the depletions, we suggest that the mechanism is composition changes due to ion‐neutral frictional heating transported by neutral winds. Even though depletedF‐regions may occur within any of the large‐scale FAC regions or outside of them, the downward FAC regions (R2 in the afternoon and evening, R0 in the afternoon, and R1 in the morning) are favored, suggesting that downward currents carried by upward moving ionospheric electrons may provide a small additional effect for depletion. 
    more » « less
  3. Abstract The sub‐auroral polarization stream (SAPS) is a region of westward high velocity plasma convection equatorward of the auroral oval that plays an important role in mid‐latitude space weather dynamics. In this study, we present observations of SAPS flows extending across the North American sector observed during the recovery phase of a minor geomagnetic storm. A resurgence in substorm activity drove a new set of field‐aligned currents (FACs) into the ionosphere, initiating the SAPS. An upward FAC system is the most prominent feature spreading across most SAPS local times, except near dusk, where a downward current system is pronounced. The location of SAPS flows remained relatively constant, firmly inside the trough, independent of the variability in the location and intensity of the FACs. The SAPS flows were sustained even after the FACs weakened and retreated polewards with a decline in geomagnetic activity. The observations indicate that the mid‐latitude trough plays a crucial role in determining the location of the SAPS and that SAPS flows can be sustained even after the magnetospheric driver has weakened. 
    more » « less
  4. null (Ed.)
    Abstract. The high-latitude atmosphere is a dynamic region with processes that respond to forcing from the Sun, magnetosphere, neutral atmosphere, andionosphere. Historically, the dominance of magnetosphere–ionosphere interactions has motivated upper atmospheric studies to use magneticcoordinates when examining magnetosphere–ionosphere–thermosphere coupling processes. However, there are significant differences between thedominant interactions within the polar cap, auroral oval, and equatorward of the auroral oval. Organising data relative to these boundaries hasbeen shown to improve climatological and statistical studies, but the process of doing so is complicated by the shifting nature of the auroral ovaland the difficulty in measuring its poleward and equatorward boundaries. This study presents a new set of open–closed magnetic field line boundaries (OCBs) obtained from Active Magnetosphere and Planetary ElectrodynamicsResponse Experiment (AMPERE) magnetic perturbation data. AMPERE observations of field-aligned currents (FACs) are used to determine the location ofthe boundary between the Region 1 (R1) and Region 2 (R2) FAC systems. This current boundary is thought to typically lie a few degrees equatorwardof the OCB, making it a good candidate for obtaining OCB locations. The AMPERE R1–R2 boundaries are compared to the Defense MeteorologicalSatellite Program Special Sensor J (DMSP SSJ) electron energy flux boundaries to test this hypothesis and determine the best estimate of thesystematic offset between the R1–R2 boundary and the OCB as a function of magnetic local time. These calibrated boundaries, as well as OCBsobtained from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) observations, are validated using simultaneous observations of theconvection reversal boundary measured by DMSP. The validation shows that the OCBs from IMAGE and AMPERE may be used together in statisticalstudies, providing the basis of a long-term data set that can be used to separate observations originating inside and outside of the polar cap. 
    more » « less
  5. Auroral precipitation is the second major energy source after solar irradiation that ionizes the Earth’s upper atmosphere. Diffuse electron aurora caused by wave-particle interaction in the inner magnetosphere (L < 8) takes over 60% of total auroral energy flux, strongly contributing to the ionospheric conductance and thus to the ionosphere-thermosphere dynamics. This paper quantifies the impact of chorus waves on the diffuse aurora and the ionospheric conductance during quiet, medium, and strong geomagnetic activities, parameterized by AE <100, 100 < AE < 300, and AE > 300, respectively. Using chorus wave statistics and inner-magnetosphere plasma conditions from Timed History Events and Macroscale Interactions during Substorms (THEMIS) observations, we directly derive the energy spectrum of diffuse electron precipitation under quasi-linear theory. We then calculate the height-integrated conductance from the wave-driven aurora spectrum using the electron impact ionization model of Fang et al. (Geophys. Res. Lett., 2010, 37) and the MSIS atmosphere model. By utilizing Fang’s ionization model, the US Naval Research Laboratory Mass Spectrometer and Incoherent Scattar Radar (NRLMSISE-00) model from 2000s for the neutral atmosphere components, and the University of California, Los Angeles (UCLA) Full Diffusion Code, we improve upon the standard generalization of Maxwellian diffuse electron precipitation patterns and their resulting ionosphere conductance. Our study of global auroral precipitation and ionospheric conductance from chorus wave statistics is the first statistical model of its kind. We show that the total electron flux and conductance pattern from our results agree with those of Ovation Prime model over the pre-midnight to post-dawn sector as geomagnetic activity increases. Our study examines the relative contributions of upper band chorus (UBC) and lower band chorus wave (LBC) driven conductance in the ionosphere. We found LBC waves drove diffuse electron precipitation significantly more than UBC waves, however it is possible that THEMIS data may have underestimated the upper chorus band wave observations for magnetic latitudes below 65 °
    more » « less