Faults are usually surrounded by damage zones associated with localized deformation. Here we use fully dynamic earthquake cycle simulations to quantify the behaviors of earthquakes in fault damage zones. We show that fault damage zones can make a significant contribution to the spatial and temporal seismicity distribution. Fault stress heterogeneities generated by fault zone waves persist over multiple earthquake cycles that, in turn, produce small earthquakes that are absent in homogeneous simulations with the same friction conditions. Shallow fault zones can produce a bimodal depth distribution of earthquakes with clustering of seismicity at both shallower and deeper depths. Fault zone healing during the interseismic period also promotes the penetration of aseismic slip into the locked region and reduces the sizes of fault asperities that host earthquakes. Hence, small and moderate subsurface earthquakes with irregular recurrence intervals are commonly observed in immature fault zone simulations with interseismic healing. To link our simulation results to geological observations, we will use simulated fault slip at different depths to infer the timing and recurrence intervals of earthquakes and discuss how such measurements can affect our understanding of earthquake behaviors. We will also show that the maturity and material properties of fault damage zones have strong influence on whether long-term earthquake characteristics are represented by single events.
more »
« less
This content will become publicly available on February 28, 2026
Fault material heterogeneity controls deep interplate earthquakes
Earthquakes may seem random, but are often concentrated in some localized areas. Thus, they are likely controlled by fault materials and stress heterogeneity, which are little understood. Here, we provide high-resolution observations of fault material and stress heterogeneity in the Japan subduction zone through an integration of material and source imaging with numerical simulations. Our results present evidence for localized, anisotropic structures with a near-zero Poisson’s ratio in the medium surrounding 1 to 2 kilometer–sized earthquake clusters, suggesting that the fault medium is damaged, foliated, and enriched with fluid. Such localized structures may cause stress perturbations on faults that in turn favor the frequent occurrence of deep interplate earthquakes at depths of 60 to 70 kilometers. Therefore, identifying the distribution and properties of fault material heterogeneity is important for more informed assessment of earthquake hazards.
more »
« less
- Award ID(s):
- 1943742
- PAR ID:
- 10574118
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 11
- Issue:
- 9
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The fault damage zone is a well-known structure of localized deformation around faults. Its material properties evolve over earthquake cycles due to coseismic damage accumulation and interseismic healing. We will present fully dynamic earthquake cycle simulations to show how the styles of earthquake nucleation and rupture propagation change as fault zone material properties vary temporally. First, we will focus on the influence of fault zone structural maturity quantified by near-fault seismic wave velocities in simulations. The simulations show that immature fault zones promote small and moderate subsurface earthquakes with irregular recurrence intervals, whereas mature fault zones host pulse-like earthquake rupture that can propagate to the surface, extend throughout the seismogenic zone, and occur at regular intervals. The interseismic healing in immature fault zones plays a key role in allowing the development of aseismic slip episodes including slow-slip events and creep, which can propagate into the seismogenic zone, and thus limit the sizes of subsequent earthquakes by releasing fault stress. In the second part, we will discuss how the precursory changes of seismic wave velocities of fault damage zones may affect earthquake nucleation process. Both laboratory experiments and seismic observations show that the abrupt earthquake failure can be preceded by accelerated fault deformation and the accompanying velocity reduction of near-fault rocks. We will use earthquake cycle simulations to systematically test the effects of timing and amplitudes of such precursory velocity changes. Our simulations will provide new insights into the interplay between fault zone structure and earthquake nucleation process, which can be used to guide future real-time monitoring of major fault zones.more » « less
-
One of most universal statistical properties of earthquakes is the tendency to cluster in space and time. Yet while clustering is pervasive, individual earthquake sequences can vary markedly in duration, spatial extent, and time evolution. In July 2014, a prolific earthquake sequence initiated within the Sheldon Wildlife Refuge in northwest Nevada, USA. The sequence produced 26 M4 earthquakes and several hundred M3s, with no clear mainshock or obvious driving force. Here we combine a suite of seismological analysis techniques to better characterize this unusual earthquake sequence. High-precision relocations reveal a clear, east dipping normal fault as the dominant structure that intersects with a secondary, subvertical cross fault. Seismicity occurs in burst of activity along these two structures before eventually transitioning to shallower structures to the east. Inversion of hundreds of moment tensors constrain the overall normal faulting stress regime. Source spectral analysis suggests that the stress drops and rupture properties of these events are typical for tectonic earthquakes in the western US. While regional station coverage is sparse in this remote study region, the timely installation of a temporary seismometer allows us to detect nearly 70,000 earthquakes over a 40-month time period when the seismic activity is highest. Such immense productivity is difficult to reconcile with current understanding of crustal deformation in the region and may be facilitated by local hydrothermal processes and earthquake triggering at the transitional intersection of subparallel fault systems.more » « less
-
Abstract Earthquakes occur in clusters or sequences that arise from complex triggering mechanisms, but direct measurement of the slow subsurface slip responsible for delayed triggering is rarely possible. We investigate the origins of complexity and its relationship to heterogeneity using an experimental fault with two dominant seismic asperities. The fault is composed of quartz powder, a material common to natural faults, sandwiched between 760 mm long polymer blocks that deform the way 10 meters of rock would behave. We observe periodic repeating earthquakes that transition into aperiodic and complex sequences of fast and slow events. Neighboring earthquakes communicate via migrating slow slip, which resembles creep fronts observed in numerical simulations and on tectonic faults. Utilizing both local stress measurements and numerical simulations, we observe that the speed and strength of creep fronts are highly sensitive to fault stress levels left behind by previous earthquakes, and may serve as on-fault stress meters.more » « less
-
The potential relationship between surface creep and deeper geological processes is unclear, even on one of the world’s best-studied faults. From June to August 2021, a large creep event with surface slip of more than 16 mm was recorded on the Calaveras fault in California, part of the San Andreas fault system. This event initially appeared to be accompanied by along-fault migration of seismicity, suggesting it penetrated to depth. Other studies have suggested that surface creep events are likely a shallow feature, unrelated to deep seismicity. To provide more detail on the relationship between earthquakes, surface creep, and potential aseismic slip at seismogenic depth, we tripled the number of earthquakes in the Northern California Earthquake Catalog in the region of the creep event for all of 2021. This was accomplished by implementing earthquake detection techniques based on both template matching (EQCorrscan) and AI-based automatic earthquake phase picking (PhaseNet). After manual inspection, the detected earthquakes were first located using Hypoinverse and subsequently relocated via GrowClust. Our enhanced catalog indicates that the spatiotemporal pattern of earthquakes here is not strongly influenced by the creep event and is better explained by structural heterogeneity than transient stress changes, indicating a decoupling of seismicity rate and surficial creep on this major fault.more » « less
An official website of the United States government
