We report deterministic control over a moiré superlattice interference pattern in twisted bilayer graphene by implementing designable device-level heterostrain with process-induced strain engineering, a widely used technique in industrial silicon nanofabrication processes. By depositing stressed thin films onto our twisted bilayer graphene samples, heterostrain magnitude and strain directionality can be controlled by stressor film force (film stress × film thickness) and patterned stressor geometry, respectively. We examine strain and moiré interference with Raman spectroscopy through in-plane and moiré-activated phonon mode shifts. Results support systematic C 3 rotational symmetry breaking and tunable periodicity in moiré superlattices under the application of uniaxial or biaxial heterostrain. Experimental results are validated by molecular statics simulations and density functional theory based first principles calculations. This provides a method not only to tune moiré interference without additional twisting but also to allow for a systematic pathway to explore different van der Waals based moiré superlattice symmetries by deterministic design.
more »
« less
This content will become publicly available on December 11, 2025
Manipulating Moirés by Controlling Heterostrain in van der Waals Devices
Van der Waals (vdW) moirés offer tunable superlattices that can strongly manipulate electronic properties. We demonstrate the in situ manipulation of moiré superlattices via heterostrain control in a vdW device. By straining a graphene layer relative to its hexagonal boron nitride substrate, we modify the shape and size of the moiré. Our sliding-based technique achieves uniaxial heterostrain values exceeding 1%, resulting in distorted moirés values that are larger than those achievable without strain. The stretched moiré is evident in transport measurements, resulting in shifted superlattice resistance peaks and Landau fans, consistent with an enlarged superlattice unit cell. Electronic structure calculations reveal how heterostrain shrinks and distorts the moiré Brillouin zone, resulting in a reduced electronic bandwidth as well as the appearance of highly anisotropic and quasi-one-dimensional Fermi surfaces. Our heterostrain control approach opens a wide parameter space of moiré lattices to explore beyond what is possible by twist angle control alone.
more »
« less
- PAR ID:
- 10574149
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- Nano Letters
- Volume:
- 24
- Issue:
- 49
- ISSN:
- 1530-6984
- Page Range / eLocation ID:
- 15662 to 15667
- Subject(s) / Keyword(s):
- graphene heterostrain moires nanomanipulation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Lattice reconstruction and corresponding strain accumulation plays a key role in defining the electronic structure of two-dimensional moiré superlattices, including those of transition metal dichalcogenides (TMDs). Imaging of TMD moirés has so far provided a qualitative understanding of this relaxation process in terms of interlayer stacking energy, while models of the underlying deformation mechanisms have relied on simulations. Here, we use interferometric four-dimensional scanning transmission electron microscopy to quantitatively map the mechanical deformations through which reconstruction occurs in small-angle twisted bilayer MoS2and WSe2/MoS2heterobilayers. We provide direct evidence that local rotations govern relaxation for twisted homobilayers, while local dilations are prominent in heterobilayers possessing a sufficiently large lattice mismatch. Encapsulation of the moiré layers in hBN further localizes and enhances these in-plane reconstruction pathways by suppressing out-of-plane corrugation. We also find that extrinsic uniaxial heterostrain, which introduces a lattice constant difference in twisted homobilayers, leads to accumulation and redistribution of reconstruction strain, demonstrating another route to modify the moiré potential.more » « less
-
Abstract Moiré coupling in transition metal dichalcogenides (TMDCs) superlattices introduces flat minibands that enable strong electronic correlation and fascinating correlated states, and it also modifies the strong Coulomb-interaction-driven excitons and gives rise to moiré excitons. Here, we introduce the layer degree of freedom to the WSe2/WS2moiré superlattice by changing WSe2from monolayer to bilayer and trilayer. We observe systematic changes of optical spectra of the moiré excitons, which directly confirm the highly interfacial nature of moiré coupling at the WSe2/WS2interface. In addition, the energy resonances of moiré excitons are strongly modified, with their separation significantly increased in multilayer WSe2/monolayer WS2moiré superlattice. The additional WSe2layers also modulate the strong electronic correlation strength, evidenced by the reduced Mott transition temperature with added WSe2layer(s). The layer dependence of both moiré excitons and correlated electronic states can be well described by our theoretical model. Our study presents a new method to tune the strong electronic correlation and moiré exciton bands in the TMDCs moiré superlattices, ushering in an exciting platform to engineer quantum phenomena stemming from strong correlation and Coulomb interaction.more » « less
-
New properties can arise at van der Waals (vdW) interfaces hosting a moiré pattern generated by interlayer twist and strain. However, achieving precise control of interlayer twist/strain remains an ongoing challenge in vdW heterostructure assembly, and even subtle variation in these structural parameters can create significant changes in the moiré period and emergent properties. Characterizing the rate of interlayer twist/strain relaxation during thermal annealing is critical to establish a thermal budget for vdW heterostructure construction and may provide a route to improve the homogeneity of the interface or to control its final state. Here, we characterize the spatial and temporal dependence of interfacial twist and strain relaxation in marginally-twisted hBN/hBN interfaces heated under conditions relevant to vdW heterostructure assembly and typical sample annealing. We find that the ferroelectric hBN/hBN moiré at very small twist angles (θ≤0.1°) relaxes minimally during annealing in air at typical assembly temperatures of 170°C. However, at 400°C, twist angle relaxes significantly, accompanied by a decrease in spatial uniformity. Uniaxial heterostrain initially increases and then decreases over time, becoming increasingly non-uniform in direction. Structural irregularities such as step edges, contamination bubbles, or contact with the underlying substrate result in local inhomogeneity in the rate of relaxation.more » « less
-
Abstract Modern scanning probe techniques, such as scanning tunneling microscopy, provide access to a large amount of data encoding the underlying physics of quantum matter. In this work, we show how convolutional neural networks can be used to learn effective theoretical models from scanning tunneling microscopy data on correlated moiré superlattices. Moiré systems are particularly well suited for this task as their increased lattice constant provides access to intra-unit-cell physics, while their tunability allows for the collection of high-dimensional data sets from a single sample. Using electronic nematic order in twisted double-bilayer graphene as an example, we show that incorporating correlations between the local density of states at different energies allows convolutional neural networks not only to learn the microscopic nematic order parameter, but also to distinguish it from heterostrain. These results demonstrate that neural networks are a powerful method for investigating the microscopic details of correlated phenomena in moiré systems and beyond.more » « less
An official website of the United States government
