skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Application of a ferrocene-chelating heteroscorpionate ligand in nickel mediated radical polymerization
A nickel bromide complex supported by a non-innocent ferrocene-chelating heteroscorpionate ligand, [(fc(PPh2)(BH(3,5-Me2pz)2)NiBr)] ((fcP,B)NiBr, fc = 1,1′-ferrocenediyl, pz = pyrazole), was synthesized and characterized.  more » « less
Award ID(s):
2117480
PAR ID:
10574189
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
RSC
Date Published:
Journal Name:
Inorganic Chemistry Frontiers
Volume:
11
Issue:
12
ISSN:
2052-1553
Page Range / eLocation ID:
3511 to 3519
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Poly( l -lactide) (PLA) is a bioderived and biodegradable polymer that has limited applications due to its hard and brittle nature. Incorporation of 1,3-trimethylene carbonate into PLA, in a block copolymer fashion, improves the mechanical properties, while retaining the biodegradability of the polymer, and broadens its range of applications. However, the preparation of 1,3-trimethylene carbonate (TMC)/ l -lactide (LA) copolymers beyond diblock and triblock structures has not been reported, with explanations focusing mostly on thermodynamic reasons that impede the copolymerization of TMC after lactide. We discuss the preparation of multiblock copolymers via the ring opening polymerization (ROP) of LA and TMC, in a step-wise addition, by a ferrocene-chelating heteroscorpionate zinc complex, {[fc(PPh 2 )(BH[(3,5-Me) 2 pz] 2 )]Zn(μ-OCH 2 Ph)} 2 ([(fc P,B )Zn(μ-OCH 2 Ph)] 2 , fc = 1,1′-ferrocenediyl, pz = pyrazole). The synthesis of up to pentablock copolymers, from various combinations of LA and TMC, was accomplished and the physical, thermal, and mechanical properties of the resulting copolymers evaluated. 
    more » « less
  2. Abstract Electrocatalytic proton reduction to form dihydrogen (H2) is an effective way to store energy in the form of chemical bonds. In this study, we validate the applicability of a main‐group‐element‐based tin porphyrin complex as an effective molecular electrocatalyst for proton reduction. A PEGylated Sn porphyrin complex (SnPEGP) displayed high activity (−4.6 mA cm−2at −1.7 V vs. Fc/Fc+) and high selectivity (H2Faradaic efficiency of 94 % at −1.7 V vs. Fc/Fc+) in acetonitrile (MeCN) with trifluoroacetic acid (TFA) as the proton source. The maximum turnover frequency (TOFmax) for H2production was obtained as 1099 s−1. Spectroelectrochemical analysis, in conjunction with quantum chemical calculations, suggest that proton reduction occurs via an electron‐chemical‐electron‐chemical (ECEC) pathway. This study reveals that the tin porphyrin catalyst serves as a novel platform for investigating molecular electrocatalytic reactions and provides new mechanistic insights into proton reduction. 
    more » « less
  3. Abstract In this work, we provide clear evidence of magnetic anisotropy in the local orbital moment of a molecular thin film based on the SCO complex [Fe(H2B(pz)2)2(bipy)] (pz = pyrazol−1−yl, bipy = 2,2′−bipyridine). Field dependent x-ray magnetic circular dichroism measurements indicate that the magnetic easy axis for the orbital moment is along the surface normal direction. Along with the presence of a critical field, our observation points to the existence of an anisotropic energy barrier in the high-spin state. The estimated nonzero coupling constant of ∼2.47 × 10−5eV molecule−1indicates that the observed magnetocrystalline anisotropy is mostly due to spin–orbit coupling. The spin- and orbital-component anisotropies are determined to be 30.9 and 5.04 meV molecule−1, respectively. Furthermore, the estimatedgfactor in the range of 2.2–2.45 is consistent with the expected values. This work has paved the way for an understanding of the spin-state-switching mechanism in the presence of magnetic perturbations. 
    more » « less
  4. Abstract Using optical characterization, it is evident that the spin state of the spin crossover molecular complex [Fe{H2B(pz)2}2(bipy)] (pz = tris(pyrazol-1-1y)-borohydride, bipy = 2,2ʹ-bipyridine) depends on the electric polarization of the adjacent polymer ferroelectric polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) thin film. The role of the PVDF-HFP thin film is significant but complex. The UV–Vis spectroscopy measurements reveals that room temperature switching of the electronic structure of [Fe{H2B(pz)2}2(bipy)] molecules in bilayers of PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] occurs as a function of ferroelectric polarization. The retention of voltage-controlled nonvolatile changes to the electronic structure in bilayers of PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] strongly depends on the thickness of the PVDF-HFP layer. The PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] interface may affect PVDF-HFP ferroelectric polarization retention in the thin film limit. 
    more » « less
  5. Abstract Non‐porous small molecule adsorbents such as {[3,5‐(CF3)2Pz]Cu}3(where Pz=pyrazolate) are an emerging class of materials that display attractive features for ethene−ethane separation. This work examines the chemistry of fluorinated copper(I) pyrazolates {[3,5‐(CF3)2Pz]Cu}3and {[4‐Br‐3,5‐(CF3)2Pz]Cu}3with much larger 1‐butene in both solution and solid state, and reports the isolation of rare 1‐butene complexes of copper(I), {[3,5‐(CF3)2Pz]Cu(H2C=CHC2H5)}2and {[4‐Br‐3,5‐(CF3)2Pz]Cu(H2C=CHC2H5)}2and their structural, spectroscopic, and computational data. The copper−butene adduct formation in solution involves olefin‐induced structural transformation of trinuclear copper(I) pyrazolates to dinuclear mixed‐ligand systems. Remarkably, larger 1‐butene is able to penetrate the dense solid material and to coordinate with copper(I) ions at high molar occupancy. A comparison to analogous ethene and propene complexes of copper(I) is also provided. 
    more » « less