skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 26, 2026

Title: Reduction of Spectral Overlap in Spectral Surface-Enhanced Raman Spectroscopy Imaging Using a Dove Prism
The ability to combine microscopy and spectroscopy is beneficial for directly monitoring physical and biological processes. Spectral imaging approaches, where a transmission diffraction grating is placed near an imaging sensor to collect both the spatial image and spectrum for each object in the field of view, provide a relatively simple method to simultaneously collect images and spectroscopic responses on the same sensor. Initially demonstrated with fluorescence spectroscopy, the use of spectral imaging in Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) can provide a vibrational spectrum containing molecularly specific information that can inform on chemical changes. However, a major complication to this approach is the spectral overlap that occurs when objects are spaced closely together horizontally. In this work, we add a dove prism to a spectral imaging instrument developed for SERS imaging, enabling rotation of the collected SERS image and dispersed spectrum onto the imaging complementary metal-oxide semiconductor (CMOS) sensor. We demonstrate that this effectively reduces spectral overlap for emitters with clear separation between them and emitters with slightly overlapping point spread functions thereby facilitating collection of unambiguous spectra from each emitter.  more » « less
Award ID(s):
2107791
PAR ID:
10574216
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Applied Spectroscopy
ISSN:
0003-7028
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Verma, Prabhat; Suh, Yung Doug (Ed.)
    Advances in nanotechnology enable the detection of trace molecules from the enhanced Raman signal generated at the surface of plasmonic nanoparticles. We have developed technology to enable super-resolution imaging of plasmonic nanoparticles, where the fluctuations in the surface enhanced Raman scattering (SERS) signal can be analyzed with localization microscopy techniques to provide nanometer spatial resolution of the emitting molecule’s location. Additional work now enables the super-resolved SERS image and the corresponding spectrum to be acquired simultaneously. Here we will discuss how this approach can be applied to provide new insights into biological cells. 
    more » « less
  2. Imaging of surface-enhanced Raman scattering (SERS) nanoparticles (NPs) has been intensively studied for cancer detection due to its high sensitivity, unconstrained low signal-to-noise ratios, and multiplexing detection capability. Furthermore, conjugating SERS NPs with various biomarkers is straightforward, resulting in numerous successful studies on cancer detection and diagnosis. However, Raman spectroscopy only provides spectral data from an imaging area without co-registered anatomic context. This is not practical and suitable for clinical applications. Here, we propose a custom-made Raman spectrometer with computer-vision-based positional tracking and monocular depth estimation using deep learning (DL) for the visualization of 2D and 3D SERS NPs imaging, respectively. In addition, the SERS NPs used in this study (hyaluronic acid-conjugated SERS NPs) showed clear tumor targeting capabilities (target CD44 typically overexpressed in tumors) by anex vivoexperiment and immunohistochemistry. The combination of Raman spectroscopy, image processing, and SERS molecular imaging, therefore, offers a robust and feasible potential for clinical applications. 
    more » « less
  3. Multiplexed fluorescence detection has become increasingly important in the fields of biosensing and bioimaging. Although a variety of excitation/detection optical designs and fluorescence unmixing schemes have been proposed to allow for multiplexed imaging, rapid and reliable differentiation and quantification of multiple fluorescent species at each imaging pixel is still challenging. Here we present a pulsed interleaved excitation spectral fluorescence lifetime microscopic (PIE-sFLIM) system that can simultaneously image six fluorescent tags in live cells in a single hyperspectral snapshot. Using an alternating pulsed laser excitation scheme at two different wavelengths and a synchronized 16-channel time-resolved spectral detector, our PIE-sFLIM system can effectively excite multiple fluorophores and collect their emission over a broad spectrum for analysis. Combining our system with the advanced live-cell labeling techniques and the lifetime/spectral phasor analysis, our PIE-sFLIM approach can well unmix the fluorescence of six fluorophores acquired in a single measurement, thus improving the imaging speed in live-specimen investigation. 
    more » « less
  4. Spectroscopic image data has provided molecular discrimination for numerous fields including: remote sensing, food safety and biomedical imaging. Despite the various technologies for acquiring spectral data, there remains a trade-off when acquiring data. Typically, spectral imaging either requires long acquisition times to collect an image stack with high spectral specificity or acquisition times are shortened at the expense of fewer spectral bands or reduced spatial sampling. Hence, new spectral imaging microscope platforms are needed to help mitigate these limitations. Fluorescence excitation-scanning spectral imaging is one such new technology, which allows more of the emitted signal to be detected than comparable emission-scanning spectral imaging systems. Here, we have developed a new optical geometry that provides spectral illumination for use in excitation-scanning spectral imaging microscope systems. This was accomplished using a wavelength-specific LED array to acquire spectral image data. Feasibility of the LED-based spectral illuminator was evaluated through simulation and benchtop testing and assessment of imaging performance when integrated with a widefield fluorescence microscope. Ray tracing simulations (TracePro) were used to determine optimal optical component selection and geometry. Spectral imaging feasibility was evaluated using a series of 6-label fluorescent slides. The LED-based system response was compared to a previously tested thin-film tunable filter (TFTF)-based system. Spectral unmixing successfully discriminated all fluorescent components in spectral image data acquired from both the LED and TFTF systems. Therefore, the LED-based spectral illuminator provided spectral image data sets with comparable information content so as to allow identification of each fluorescent component. These results provide proof-of-principle demonstration of the ability to combine output from many discrete wavelength LED sources using a double-mirror (Cassegrain style) optical configuration that can be further modified to allow for high speed, video-rate spectral image acquisition. Real-time spectral fluorescence microscopy would allow monitoring of rapid cell signaling processes (i.e., Ca2+and other second messenger signaling) and has potential to be translated to clinical imaging platforms. 
    more » « less
  5. Abstract Glycans are the most abundant fundamental biomolecules, but profiling glycans is challenging due to their structural complexity. To address this, a novel glycan detection platform is developed by integrating surface‐enhanced Raman spectroscopy (SERS), boronic acid receptors, and machine learning tools. Boronic acid receptors bind with glycans, and the reaction influences molecular vibrations, leading to unique Raman spectral patterns. Unlike prior studies that focus on designing a boronic acid with high binding selectivity toward a target glycan, this sensor is designed to analyze overall changes in spectral patterns using machine learning algorithms. For proof‐of‐concept, 4‐mercaptophenylboronic acid (4MBA) and 1‐thianthrenylboronic acid (1TBA) are used for glycan detection. The sensing platform successfully recognizes the stereoisomers and the structural isomers with different glycosidic linkages. The collective spectra that combine the spectra from both boronic acid receptors improve the performance of the support vector machine model due to the enrichment of the structural information of glycans. In addition, this new sensor could quantify the mole fraction of sialic acid in lactose background using the machine learning regression technique. This low‐cost, rapid, and highly accessible sensor will provide the scientific community with another option for frequent comparative glycan screening in standard biological laboratories. 
    more » « less