Abstract Significant carbon sequestration capacity (up to 10 Gigatons/yr) will be needed by 2050 to limit the Earth’s temperature rise to < 1.5 °C. The current worldwide capacity is ∼40MT/yr, which highlights the need for the development of new and scalable sequestration approaches. One novel technology for long-term sequestration of CO2 is the deposition of CO2 hydrates (ice-like solids made with water and CO2) on the seabed (under marine sediments or with artificial sealing). This involves rapid formation of CO2 hydrate slurries in a bubble column reactor (BCR) by bubbling CO2 gas at high flow rates in a BCR with the unreacted CO2 being recirculated; this approach is being pioneered by the present research group. This study utilizes recent experimental results on ultra-fast hydrate formation to conduct a techno-economic analysis of the hydrate slurry-making process. All analysis is conducted for a 1 Megaton/yr sequestration project, which is expected to run for 30 years. Our analysis shows that the total cost of hydrate slurry production is $16.2/ton. Such projects would require an initial investment of $74M, and the energy requirement will be 641 MWh/day. Contributions of each part of the process to the total cost are identified. Our results show that gas recirculation in a BCR contributes minimally (0.04%) to the overall energy requirement. Furthermore, the cost of BCR is only 0.3% of the total investment cost. This suggests that a low conversion of gas into hydrates in each pass of the BCR is not detrimental from a techno-economic standpoint. The findings of this study set the stage for more detailed analysis of hydrates-based sequestration, which is essential to add this technology to the existing bank of established carbon sequestration solutions.
more »
« less
Analysis of Electrochemical Capture of CO2 From Oceanwater Coupled With Hydrates-Based Seabed Sequestration
Abstract Novel energy efficient and scalable carbon capture and sequestration technologies are critical to meeting the goals of the Paris Agreement. In this study, we present a first-order system-level assessment of an integrated carbon capture and carbon sequestration plant that couples electrochemical CO2 capture from oceanwater with co-located long-term carbon sequestration as CO2 hydrates (ice-like solids) on the seabed. Separate recent experimental results associated with electrochemical capture and hydrate formation form the basis for this energetics-focused analysis, which evaluates power consumption of all the key components associated with capture and sequestration. Hydrates can be formed from both pure water as well as seawater, and the implications of including a desalination plant to provide pure water for hydrate formation are studied. All analysis is conducted for a 1 plant which captures and sequesters 1 megaton CO2 annually. Our results indicate the carbon capture will consume significantly more energy than carbon sequestration despite the use of a low-energy consuming electrochemical technique. From a sequestration standpoint, there are clear benefits to forming hydrates at high pressures, since the elevated formation rates reduce the number of hydrate formation reactors significantly. It is also seen that the addition of a desalination plant to provide pure water for hydrate formation (which speeds up hydrate formation) will not affect the energetics of the overall process significantly; however the CAPEX and operational aspects of including a desalination plant need to be analyzed in greater detail. Overall, this study seeds a novel CCS concept which can be deployed via decommissioned oil-gas platforms to capture CO2 from surface oceanwater and store CO2 right below on the seabed after appropriate sealing (artificial or natural).
more »
« less
- Award ID(s):
- 2234604
- PAR ID:
- 10574274
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8789-9
- Format(s):
- Medium: X
- Location:
- Anaheim, California, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Understanding the effect of moderate concentration SDS on CO2 hydrates growth in the presence of THFHypothesis: Additives like Tetrahydrofuran (THF) and Sodium Dodecylsulfate (SDS) improve Carbon Dioxide (CO2) hydrates thermal stability and growth rate when used separately. It has been hypothesised that combining them could improve the kinetics of growth and the thermodynamic stability of CO2 hydrates. Simulations and Experiments: We exploit atomistic molecular dynamics simulations to investigate the combined impact of THF and SDS under different temperatures and concentrations. The simulation insights are verified experimentally using pendant drop tensiometry conducted at ambient pressures and high-pressure differential scanning calorimetry. Findings: Our simulations revealed that the combination of both additives is synergistic at low temperatures but antagonistic at temperatures above 274.1 K due to the aggregation of SDS molecules induced by THF molecules. These aggregates effectively remove THF and CO2 from the hydrate-liquid interface, thereby reducing the driving force for hydrates growth. Experiments revealed that the critical micelle concentration of SDS in water decreases by 20% upon the addition of THF. Further experiments in the presence of THF showed that only small amounts of SDS are sufficient to increase the CO2 storage efficiency by over 40% compared to results obtained without promoters. Overall, our results provide microscopic insights into the mechanisms of THF and SDS promoters on CO2 hydrates, useful for determining the optimal conditions for hydrate growth.more » « less
-
Nucleation of clathrate hydrates at low temperatures is constrained by very long induction (wait) times, which can range from hours to days. Electronucleation (application of an electrical potential difference across the hydrate forming solution) can significantly reduce the induction time. This work studies the use of porous open-cell foams of various materials as electronucleation electrodes. Experiments with tetrahydrofuran (THF) hydrates reveal that aluminum and carbon foam electrodes can enable voltage-dependent nucleation, with induction times dependent on the ionization tendency of the foam material. Furthermore, we observe a non-trivial dependence of the electronucleation parameters such as induction time and the recalescence temperature on the water:THF molar ratio. This study further corroborates previously developed hypotheses which associated rapid hydrate nucleation with the formation of metal-ion coordination compounds. Overall, this work studies various aspects of electronucleation with aluminum and carbon foams.more » « less
-
Several carbon sequestration technologies have been proposed to utilize carbon dioxide (CO2) to produce energy and chemical compounds. However, feasible technologies have not been adopted due to the low efficiency conversion rate and high-energy requirements. Process intensification increases the process productivity and efficiency by combining chemical reactions and separation operations. In this work, we present a model of a chemical-electrochemical cyclical process that can capture carbon dioxide as a bicarbonate salt. The proposed process also produces hydrogen and electrical energy. Carbon capture is enhanced by the reaction at the cathode that displaces the equilibrium into bicarbonate production. Literature data show that the cyclic process can produce stable operation for long times by preserving ionic balance using a suitable ionic membrane that regulates ionic flows between the two half-cells. Numerical simulations have validated the proof of concept. The proposed process could serve as a novel CO2 sequestration technology while producing electrical energy and hydrogen.more » « less
-
Hydrate formation is often unavoidable during crystallization, leading to performance degradation of pharmaceuticals and energetics. In some cases, water molecules trapped within crystal lattices can be substituted for hydrogen peroxide, improving the solubility of drugs and detonation performance of explosives. The present work compares hydrates and hydrogen peroxide solvates in two ways: (1) analyzing structural motifs present in crystal structures accessed from the Cambridge Structural Database and (2) developing potential energy surfaces for water and hydrogen peroxide interacting with functional groups of interest at geometries relevant to the solid state. By elucidating fundamental differences in local interactions that can be formed with molecules of hydrogen peroxide and/or water, the analyses presented here provide a foundation for the design and selection of candidate molecules for the formation of hydrogen peroxide solvates.more » « less
An official website of the United States government

