skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Study of ion charging effect to improve reactive-ion-etching profile of PbSe grating structures
This research studies the impact of the charging effect on the RIE-etched profile of narrow-slot Lead- Selenide (PbSe) gratings. By decreasing the slot width from 4 to 2 𝜇𝑚, we observed the increased irregularity and RIE-lag in etched profiles.We suggest that the charging effect is the main responsible mechanism for this phenomenon. The accumulated charge on the non-conductive photoresist plays a crucial role in forming this effect. Therefore, introducing a conductive layer can neutralize the accumulated charge and significantly improves the profile. To prove this theory, we introduced a thin layer of copper on the gratings. While without any conductive coating, we failed to etch gratings with a slot width of less than 1 𝜇𝑚, by introducing a copper layer, we succeeded etching gratings with 0.7 𝜇𝑚 slot width with the improved sidewall profiles. Hence, this technique enables us to fabricate sub-micron PbSe gratings with applications of mid-infrared (MIR) devices.  more » « less
Award ID(s):
2340060
PAR ID:
10574365
Author(s) / Creator(s):
; ;
Publisher / Repository:
Microelectronic Engineering
Date Published:
Journal Name:
Microelectronic Engineering
Volume:
289
Issue:
C
ISSN:
0167-9317
Page Range / eLocation ID:
112170
Subject(s) / Keyword(s):
PbSe, Reactive Ion Etching, Mid-infrared wavelength
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The reliability of the plasma etched copper lines with the self-aligned copper oxide passivation layer has been studied with the electromigration stress method. The oxide passivation layer was prepared by plasma oxidation, which covers the entire exposed copper line to prevent the surface oxidation under the ambient condition. The void formation and growth process reflect the line broken mechanism. Voids formed from grain boundary depletion and grain thinning were monitored by optical microscopes. The line failure times with respect to line width and current density were measured. The addition of the oxide passivation layer shortened the lifetime due to the poor heat transfer and copper diffusion, which accelerated the formation and growth of the voids. The narrow line has a longer lifetime than the wide line because of the fewer grain boundaries for flux divergence to form voids. The copper oxide passivation layer was formed self-aligned to the copper line. It also gettered copper atoms diffused from the bulk copper film. 
    more » « less
  2. Abstract We report the synthesis of a soluble precursor that transforms into crystalline SnSe at 200 °C. This transformation temperature is significantly lower than the 270–350 °C range of previously reported tin selenide precursors. This precursor is synthesized by reacting tin with dimethyl diselenide and we identify the precursor as tin(IV) methylselenolate using a combination of mass spectrometry, Raman spectroscopy, and nuclear magnetic resonance spectroscopy. We then chemically treat PbSe colloidal nanocrystals with this precursor and subject them to mild annealing. We characterize the chemical and structural changes during this processing using infrared spectroscopy, aberration‐corrected scanning transmission electron microscopy, and X‐ray photoelectron spectroscopy. These characterization studies indicate the successful formation of a SnSe‐like material that fills the interstitial space between the PbSe nanocrystal cores. We find that the electrical conductivity of these nanocrystal films is comparable to other excellent treatments used to improve charge transport. This excellent charge transport demonstrates the utility of tin(IV) methylselenolate as a conductive “glue” between nanocrystals. 
    more » « less
  3. Understanding and characterizing the intrinsic properties of charge carrier transport across the interfaces in van der Waals heterostructures is critical to their applications in modern electronics, thermoelectrics, and optoelectronics. However, there are very few published cross-plane resistivity measurements of thin samples because these inherently 2-probe measurements must be corrected for contact and lead resistances. Here, we present a method to extract contact resistances and metal lead resistances by fitting the width dependence of the contact end voltages of top and bottom electrodes of different linewidths to a model based on current crowding. These contributions are then subtracted from the total 2-probe cross-plane resistance to obtain the cross-plane resistance of the material itself without needing multiple devices and/or etching steps. This approach was used to measure cross-plane resistivities of a (PbSe)1(VSe2)1 heterostructure containing alternating layers of PbSe and VSe2 with random in-plane rotational disorder. Several samples measured exhibited a 4 order of magnitude difference between cross-plane and in-plane resistivities over the 6–300 K temperature range. We also reported the first observation of charge density wave transition in the cross-plane transport of (PbSe)1(VSe2)1 heterostructure. The device fabrication process is fully lift-off compatible, and the method developed enables the straightforward measurement of the resistivity anisotropy of most thin film materials with nm thicknesses. 
    more » « less
  4. The paper presents a multiscale study of the kinetic processes of the heteroepitaxial growth of the PbSe/PbTe (111) and PbTe/PbSe(001) systems, using the Concurrent Atomistic-Continuum (CAC) method as the simulation tool. The CAC simulations have reproduced the Stranski–Krastanov growth mode and the layer-by-layer growth mode of the two systems, respectively; the pyramid-shaped island morphology of the PbSe epilayer on PbTe (111), the square-like misfit dislocation networks within the PbTe/PbSe(001) interface, and the critical thickness for the PbTe/PbSe(001) system at which coherent interfaces transit to semi-coherent interfaces with the formation of misfit dislocations, all in good agreement with experimental observations. Four types of misfit dislocations are found to form during the growth of the two PbTe/PbSe heterosystems, and hexagonal-like misfit dislocation networks are observed within the PbSe/PbTe(111) interfaces. The growth processes, including the formation of misfit dislocations, have been visualized. Dislocation half-loops have been observed to nucleate from the epilayer surfaces. These half-loops extend towards the interface by climb or glide motions, interact with other half-loops, and form misfit dislocation networks at the interfaces and threading dislocations extending from interfaces to epilayer surfaces. The dominant types of misfit dislocations in both systems are found to be those with Burgers vectors parallel to the interfaces, whereas the misfit dislocations with Burgers vectors inclined to the interface have a low likelihood of generation and tend to annihilate. The size of the substrate is demonstrated to have a significant effect on the formation, evolution, and distribution of dislocations on the growth of PbSe on PbTe(111). 
    more » « less
  5. The quality of high aspect ratio (HAR) features etched into dielectrics for microelectronics fabrication using halogen containing low temperature plasmas strongly depends on the energy and angular distribution of the incident ions (IEAD) onto the wafer, as well as potentially that of the electrons (EEAD). Positive ions, accelerated to high energies by the sheath electric field, have narrow angular spreads and can penetrate deeply into HAR features. Electrons typically arrive at the wafer with nearly thermal energy and isotropic angular distributions and so do not directly penetrate deeply into features. These differences can lead to positive charging of the insides of the features that can slow etching rates and produce geometric defects such as twisting. In this work, we computationally investigated the plasma etching of HAR features into SiO 2 using tailored voltage waveforms in a geometrically asymmetric capacitively coupled plasma sustained in an Ar/CF 4 /O 2 mixture at 40 mTorr. The tailored waveform consisted of a sinusoidal wave and its higher harmonics with a fundamental frequency of 1 MHz. We found that some degree of control of the IEADs and EEADs is possible by adjusting the phase of higher harmonics φ through the resulting generation of electrical asymmetry and electric field reversal. However, the IEADs and EEADs cannot easily be separately controlled. The control of IEADs and EEADs is inherently linked. The highest quality feature was obtained with a phase angle φ = 0° as this value generated the largest (most negative) DC self-bias and largest electric field reversal for accelerating electrons into the feature. That said, the consequences of voltage waveform tailoring (VWT) on etched features are dominated by the change in the IEADs. Although VWT does produce EEADs with higher energy and narrower angular spread, the effect of these electrons on the feature compared to thermal electrons is not large. This smaller impact of VWT produced EEADs is attributed to thermal electrons being accelerated into the feature by electric fields produced by the positive in-feature charging. 
    more » « less