skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 12, 2025

Title: PEak: A Single Source of Truth for Hardware Design and Verification
Domain-specific languages for hardware can significantly enhance designer productivity, but sometimes at the cost of ease of verification. On the other hand, ISA specification languages are too static to be used during early stage design space exploration. We present PEak, an open-source hardware design and specification language, which aims to improve both design productivity and verification capability. PEak does this by providing a single source of truth for functional models, formal specifications, and RTL. PEak has been used in several academic projects, and PEak-generated RTL has been included in three fabricated hardware accelerators. In these projects, the formal capabilities of PEak were crucial for enabling both novel design space exploration techniques and automated compiler synthesis.  more » « less
Award ID(s):
2238006
PAR ID:
10574583
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Embedded Computing Systems
ISSN:
1539-9087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nadel, Alexander; Rozier, Kristin Yvonne (Ed.)
    Symbolic execution is a powerful verification tool for hardware designs, in particular for security validation. However, symbolic execution suffers from the path explosion problem in which the number of paths to explore grows exponentially with the number of branches in the design. We introduce a new approach, piecewise composition, which leverages the modular structure of hardware to transfer the work of path exploration to SMT solvers. Piecewise composition works by recognizing that independent parts of a design can each be explored once, and the exploration reused. A hardware design with N independent always blocks and at most b branch points per block will require exploration of O((2^b)N) paths in a single clock cycle with our approach compared to O(2^(bN)) paths using traditional symbolic execution. We present Sylvia, a symbolic execution engine implementing piecewise composition. The engine operates directly over RTL without requiring translation to a netlist or software simulation. We evaluate our tool on multiple open-source SoC and CPU designs, including the OR1200 and PULPissimo RISC-V SoC. The piecewise composition technique reduces the number of paths explored by an order of magnitude and reduces the runtime by 97% compared to our baseline. Using 84 properties from the security literature we find assertion violations in open-source designs that traditional model checking and formal verification tools do not find. 
    more » « less
  2. Processors are typically designed in Register Transfer Level (RTL) languages, which give designers low-level control over circuit structure and timing. To achieve good performance, processors are pipelined, with multiple instructions executing concurrently in different parts of the circuit. Thus even though processors implement a fundamentally sequential specification (the instruction set architecture), the implementation is highly concurrent. The interactions of multiple instructions---potentially speculative---can cause incorrect behavior. We present PDL, a novel hardware description language targeted at the construction of pipelined processors. PDL provides one instruction at a time semantics: the first language to enforce that the generated pipelined circuit has the same behavior as a sequential specification. This enforcement facilitates design-space exploration. Adding or removing pipeline stages, moving operations across stages, or otherwise changing pipeline structure normally requires careful analysis of bypass paths and stall logic; with PDL, this analysis is handled by the PDL compiler. At the same time, PDL still offers designers fine-grained control over performance-critical microarchitectural choices such as timing of operations, data forwarding, and speculation. We demonstrate PDL's expressive power and ease of design exploration by implementing several RISC-V cores with differing microarchitectures. Our results show that PDL does not impose significant performance or area overhead compared to a standard HDL. 
    more » « less
  3. Modern cyber-physical systems-of-systems (CPSoS) operate in complex systems-of-systems that must seamlessly work together to control safety- or mission-critical functions. Linear Temporal Logic (LTL) and Mission-time Linear Temporal logic (MLTL) intuitively express CPSoS requirements for automated system verification and validation. However, both LTL and MLTL presume that all signals populating the variables in a formula are sampled over the same rate and type (e.g., time or distance), and agree on a standard “time” step. Formal verification of cyber-physical systems-of-systems needs validate-able requirements expressed over (sub-)system signals of different types, such as signals sampled at different timescales, distances, or levels of abstraction, expressed in the same formula. Previous works developed more expressive logics to account for types (e.g., timescales) by sacrificing the intuitive simplicity of LTL. However, a legible direct one-to-one correspondence between a verbal and formal specification will ease validation, reduce bugs, increase productivity, and linearize the workflow from a project’s conception to actualization. Validation includes both transparency for human interpretation, and tractability for automated reasoning, as CPSoS often run on resource-limited embedded systems. To address these challenges, we introduced Mission-time Linear Temporal Logic Multi-type (Hariharan et al., Numerical Software Verification Workshop, 2022), a logic building on MLTL. MLTLM enables writing formal requirements over finite input signals (e.g., sensor signals and local computations) of different types, while maintaining the same simplicity as LTL and MLTL. Furthermore, MLTLM maintains a direct correspondence between a verbal requirement and its corresponding formal specification. Additionally, reasoning a formal specification in the intended type (e.g., hourly for an hourly rate, and per second for a seconds rate) will use significantly less memory in resource-constrained hardware. This article extends the previous work with (1) many illustrated examples on types (e.g., time and space) expressed in the same specification, (2) proofs omitted for space in the workshop version, (3) proofs of succinctness of MLTLM compared to MLTL, and (4) a minimal translation to MLTL of optimal length. 
    more » « less
  4. We present verification of a bare-metal server built using diverse implementation techniques and languages against a whole-system input-output specification in terms of machine code, network packets, and mathematical specifications of elliptic-curve cryptography. We used very different formal-reasoning techniques throughout the stack, ranging from computer algebra, symbolic execution, and verification-condition generation to interactive verification of functional programs including compilers for C-like and functional languages. All these component specifications and domain-specific reasoning techniques are defined and justified against common foundations in the Coq proof assistant. Connecting these components is a minimalistic specification style based on functional programs and assertions over simple objects, omnisemantics for program execution, and basic separation logic for memory layout. This design enables us to bring the components together in a top-level correctness theorem that can be audited without understanding or trusting the internal interfaces and tools. Our case study is a simple cryptographic server for flipping of a bit of state through public-key authenticated network messages, and its proof shows total functional correctness including static bounds on memory usage. This paper also describes our experiences with the specific verification tools we build upon, along with detailed analysis of reasons behind the widely varying levels of productivity we experienced between combinations of tools and tasks. 
    more » « less
  5. Compared to traditional hardware development methodologies, High-Level Synthesis (HLS) offers a faster time-to-market and lower design cost at the expense of implementation efficiency. Although Software/Hardware Codesign has been used in many areas, its usability for benchmarking of candidates in cryptographic competitions has been largely unexplored. This paper provides a comparison of the HLS- and RTL-based design methodologies when applied to the hardware design of the Number Theoretic Transform (NTT) – a core arithmetic function of lattice-based Post-Quantum Cryptography (PQC). As a next step, we apply Software/Hardware Codesign approach to the implementation of three PQC schemes based on NTT. Then, we integrate our HLS implementation into the Xilinx SDSoC environment. We demonstrate that an overhead of SDSoC compared to traditional Bare Metal approach is acceptable. This paper also shows that an HLS implementation obtained by modeling a block diagram is typically much better than an implementation obtained by using design space exploration. We conclude that the HLS/SDSoC and RTL/Bare Metal approaches generate comparable results. 
    more » « less