Nadel, Alexander; Rozier, Kristin Yvonne
(Ed.)
Symbolic execution is a powerful verification tool for hardware designs, in particular for security validation. However, symbolic execution suffers from the path explosion problem in which the number of paths to explore grows exponentially with the number of branches in the design. We introduce a new approach, piecewise composition, which leverages the modular structure of hardware to transfer the work of path exploration to SMT solvers. Piecewise composition works by recognizing that independent parts of a design can each be explored once, and the exploration reused. A hardware design with N independent always blocks and at most b branch points per block will require exploration of O((2^b)N) paths in a single clock cycle with our approach compared to O(2^(bN)) paths using traditional symbolic execution. We present Sylvia, a symbolic execution engine implementing piecewise composition. The engine operates directly over RTL without requiring translation to a netlist or software simulation. We evaluate our tool on multiple open-source SoC and CPU designs, including the OR1200 and PULPissimo RISC-V SoC. The piecewise composition technique reduces the number of paths explored by an order of magnitude and reduces the runtime by 97% compared to our baseline. Using 84 properties from the security literature we find assertion violations in open-source designs that traditional model checking and formal verification tools do not find.
more »
« less
An official website of the United States government
