skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy conversion and transport in molecular-scale junctions
Molecular-scale junctions (MSJs) have been considered the ideal testbed for probing physical and chemical processes at the molecular scale. Due to nanometric confinement, charge and energy transport in MSJs are governed by quantum mechanically dictated energy profiles, which can be tuned chemically or physically with atomic precision, offering rich possibilities beyond conventional semiconductor devices. While charge transport in MSJs has been extensively studied over the past two decades, understanding energy conversion and transport in MSJs has only become experimentally attainable in recent years. As demonstrated recently, by tuning the quantum interplay between the electrodes, the molecular core, and the contact interfaces, energy processes can be manipulated to achieve desired functionalities, opening new avenues for molecular electronics, energy harvesting, and sensing applications. This Review provides a comprehensive overview and critical analysis of various forms of energy conversion and transport processes in MSJs and their associated applications. We elaborate on energy-related processes mediated by the interaction between the core molecular structure in MSJs and different external stimuli, such as light, heat, electric field, magnetic field, force, and other environmental cues. Key topics covered include photovoltaics, electroluminescence, thermoelectricity, heat conduction, catalysis, spin-mediated phenomena, and vibrational effects. The review concludes with a discussion of existing challenges and future opportunities, aiming to facilitate in-depth future investigation of promising experimental platforms, molecular design principles, control strategies, and new application scenarios.  more » « less
Award ID(s):
2239004
PAR ID:
10574603
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
Applied Physics Reviews
Volume:
11
Issue:
4
ISSN:
1931-9401
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract It has been well-accepted that heat conduction in solids is mainly mediated by electrons and phonons. Recently, there has been a strong emerging interest in the contribution of various polaritons, quasi-particles resulting from the coupling between electromagnetic waves and different excitations in solids, to heat conduction. Traditionally, the polaritonic effect on conduction has been largely neglected because of the low number density of polaritons. However, it has been recently predicted and experimentally confirmed that polaritons could play significant roles in heat conduction in polar nanostructures. Since the transport characteristics of polaritons are very different from those of electrons and phonons, polariton-mediated heat conduction provides new opportunities for manipulating heat flow in solid-state devices for more efficient heat dissipation or energy conversion. In view of the rapid growth of polariton-mediated heat conduction, especially by phonon polaritons, here we review the recent progress in this field and provide perspectives for challenges and opportunities. Graphical abstract 
    more » « less
  2. Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focussing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how they affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have. 
    more » « less
  3. In this Perspective, we discuss thermal imbalance and the associated electron-mediated thermal transport in quantum electronic devices at very low temperatures. We first present the theoretical approaches describing heat transport in nanoscale conductors at low temperatures, in which quantum confinement and interactions play an important role. We then discuss the experimental techniques for generating and measuring heat currents and temperature gradients on the nanoscale. Eventually, we review the most important quantum effects on heat transport and discuss implications for quantum technologies and future directions in the field. 
    more » « less
  4. Hybrid materials combining the optoelectronic absorption and tunability of quantum dots (QDs) with the high surface area, chemical functionality, and porosity of metal-organic frameworks (MOFs) are emerging as systems with unique optoelectronic properties relevant to applications in catalysis, sensing, and energy conversion and storage. A key component of the electronic interaction between QDs and MOFs is the transfer of charge between the two materials. This review examines the mechanisms driving charge transfer at the QD/MOF interfaces and the effects that both physical and chemical composition have on this process. We provide an overview of the key experimental approaches, including spectroscopic and electrochemical techniques, which have been used for probing charge transfer dynamics in this hybrid system. Challenges in controlling interfacial structure, distinguishing between charge and energy transfer, and optimizing stability are also discussed. This review highlights recent work on the preparation and characterization of QD/MOF hybrid materials, as well as fundamental studies advancing the understanding of charge transfer processes that occur in these systems. 
    more » « less
  5. Abstract Spin excitations, including magnons and spinons, can carry thermal energy and spin information. Studying spin‐mediated thermal transport is crucial for spin caloritronics, enabling efficient heat dissipation in microelectronics and advanced thermoelectric applications. However, designing quantum materials with controllable spin transport is challenging. Here, highly textured spin‐chain compound Ca2CuO3is synthesized using a solvent‐cast cold pressing technique, aligning 2D nanostructures with spin chains perpendicular to the pressing direction. The sample exhibits high thermal conductivity anisotropy and an excellent room‐temperature thermal conductivity of 12 ± 0.7 W m−1K−1, surpassing all polycrystalline quantum magnets. Such a high value is attributed to the significant spin‐mediated thermal conductivity of 10 ± 1 W m−1K−1, the highest reported among all polycrystalline quantum materials. Analysis through a 1D kinetic model suggests that near room‐temperature, spinon thermal transport is dominated by coupling with high‐frequency phonons, while extrinsic spinon‐defect scattering is negligible. Additionally, this method is used to prepare textured La2CuO4, exhibiting highly anisotropic magnon thermal transport and demonstrating its broad applicability. A distinct role of defect scattering in spin‐mediated thermal transport is observed in two spin systems. These findings open new avenues for designing quantum materials with controlled spin transport for thermal management and energy conversion. 
    more » « less