skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient Algorithms and New Characterizations for CSP Sparsification
CSP sparsification, introduced by Kogan and Krauthgamer (ITCS 2015), considers the following question: how much can an instance of a constraint satisfaction problem be sparsified (by retaining a reweighted subset of the constraints) while still roughly capturing the weight of constraints satisfied by {\em every} assignment. CSP sparsification captures as a special case several well-studied problems including graph cut-sparsification, hypergraph cut-sparsification, hypergraph XOR-sparsification, and corresponds to a general class of hypergraph sparsification problems where an arbitrary 0/1-valued {\em splitting function} is used to define the notion of cutting a hyperedge (see, for instance, Veldt-Benson-Kleinberg SIAM Review 2022). The main question here is to understand, for a given constraint predicate P:Σr→{0,1} (where variables are assigned values in Σ), the smallest constant c such that O˜(nc) sized sparsifiers exist for every instance of a constraint satisfaction problem over P. A recent work of Khanna, Putterman and Sudan (SODA 2024) [KPS24] showed {\em existence} of near-linear size sparsifiers for new classes of CSPs. In this work (1) we significantly extend the class of CSPs for which nearly linear-size sparsifications can be shown to exist while also extending the scope to settings with non-linear-sized sparsifications; (2) we give a polynomial-time algorithm to extract such sparsifications for all the problems we study including the first efficient sparsification algorithms for the problems studied in [KPS24].  more » « less
Award ID(s):
2152413
PAR ID:
10574633
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM Corr
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce a notion of code sparsification that generalizes the notion of cut sparsification in graphs. For a (linear) code C ⊆ 𝔽nq of dimension k a (1 ± ɛ)-sparsification of size s is given by a weighted set S ⊆ [n] with |S| ≤ s such that for every codeword c ∈ C the projection c|s of c to the set S has (weighted) hamming weight which is a (1 ± ɛ) approximation of the hamming weight of c. We show that for every code there exists a (1 ± ɛ)-sparsification of size s = Õ(k log(q)/ɛ2). This immediately implies known results on graph and hypergraph cut sparsification up to polylogarithmic factors (with a simple unified proof) — the former follows from the well-known fact that cuts in a graph form a linear code over 𝔽2, while the latter is obtained by a simple encoding of hypergraph cuts. Further, by connections between the eigenvalues of the Laplacians of Cayley graphs over to the weights of codewords, we also give the first proof of the existence of spectral Cayley graph sparsifiers over by Cayley graphs, i.e., where we sparsify the set of generators to nearly-optimal size. Additionally, this work can be viewed as a continuation of a line of works on building sparsifiers for constraint satisfaction problems (CSPs); this result shows that there exist near-linear size sparsifiers for CSPs over 𝔽p-valued variables whose unsatisfying assignments can be expressed as the zeros of a linear equation modulo a prime p. As an application we give a full characterization of ternary Boolean CSPs (CSPs where the underlying predicate acts on three Boolean variables) that allow for near-linear size sparsification. This makes progress on a question posed by Kogan and Krauthgamer (ITCS 2015) asking which CSPs allow for near-linear size sparsifiers (in the number of variables). At the heart of our result is a codeword counting bound that we believe is of independent interest. Indeed, extending Karger's cut-counting bound (SODA 1993), we show a novel decomposition theorem of linear codes: we show that every linear code has a (relatively) small subset of coordinates such that after deleting those coordinates, the code on the remaining coordinates has a smooth upper bound on the number of codewords of small weight. Using the deleted coordinates in addition to a (weighted) random sample of the remaining coordinates now allows us to sparsify the whole code. The proof of this decomposition theorem extends Karger's proof (and the contraction method) in a clean way, while enabling the extensions listed above without any additional complexity in the proofs. 
    more » « less
  2. We introduce a notion of code sparsification that generalizes the notion of cut sparsification in graphs. For a (linear) code C ⊆ 𝔽nq of dimension k a (1 ± ɛ)-sparsification of size s is given by a weighted set S ⊆ [n] with |S| ≤ s such that for every codeword c ∈ C the projection c|s of c to the set S has (weighted) hamming weight which is a (1 ± ɛ) approximation of the hamming weight of c. We show that for every code there exists a (1 ± ɛ)-sparsification of size s = Õ(k log(q)/ɛ2). This immediately implies known results on graph and hypergraph cut sparsification up to polylogarithmic factors (with a simple unified proof) — the former follows from the well-known fact that cuts in a graph form a linear code over 𝔽2, while the latter is obtained by a simple encoding of hypergraph cuts. Further, by connections between the eigenvalues of the Laplacians of Cayley graphs over to the weights of codewords, we also give the first proof of the existence of spectral Cayley graph sparsifiers over by Cayley graphs, i.e., where we sparsify the set of generators to nearly-optimal size. Additionally, this work can be viewed as a continuation of a line of works on building sparsifiers for constraint satisfaction problems (CSPs); this result shows that there exist near-linear size sparsifiers for CSPs over 𝔽p-valued variables whose unsatisfying assignments can be expressed as the zeros of a linear equation modulo a prime p. As an application we give a full characterization of ternary Boolean CSPs (CSPs where the underlying predicate acts on three Boolean variables) that allow for near-linear size sparsification. This makes progress on a question posed by Kogan and Krauthgamer (ITCS 2015) asking which CSPs allow for near-linear size sparsifiers (in the number of variables). At the heart of our result is a codeword counting bound that we believe is of independent interest. Indeed, extending Karger's cut-counting bound (SODA 1993), we show a novel decomposition theorem of linear codes: we show that every linear code has a (relatively) small subset of coordinates such that after deleting those coordinates, the code on the remaining coordinates has a smooth upper bound on the number of codewords of small weight. Using the deleted coordinates in addition to a (weighted) random sample of the remaining coordinates now allows us to sparsify the whole code. The proof of this decomposition theorem extends Karger's proof (and the contraction method) in a clean way, while enabling the extensions listed above without any additional complexity in the proofs. 
    more » « less
  3. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    Recently, a number of variants of the notion of cut-preserving hypergraph sparsification have been studied in the literature. These variants include directed hypergraph sparsification, submodular hypergraph sparsification, general notions of approximation including spectral approximations, and more general notions like sketching that can answer cut queries using more general data structures than just sparsifiers. In this work, we provide reductions between these different variants of hypergraph sparsification and establish new upper and lower bounds on the space complexity of preserving their cuts. Specifically, we show that: 1) (1 ± ε) directed hypergraph spectral (respectively cut) sparsification on n vertices efficiently reduces to (1 ± ε) undirected hypergraph spectral (respectively cut) sparsification on n² + 1 vertices. Using the work of Lee and Jambulapati, Liu, and Sidford (STOC 2023) this gives us directed hypergraph spectral sparsifiers with O(n² log²(n) / ε²) hyperedges and directed hypergraph cut sparsifiers with O(n² log(n)/ ε²) hyperedges by using the work of Chen, Khanna, and Nagda (FOCS 2020), both of which improve upon the work of Oko, Sakaue, and Tanigawa (ICALP 2023). 2) Any cut sketching scheme which preserves all cuts in any directed hypergraph on n vertices to a (1 ± ε) factor (for ε = 1/(2^{O(√{log(n)})})) must have worst-case bit complexity n^{3 - o(1)}. Because directed hypergraphs are a subclass of submodular hypergraphs, this also shows a worst-case sketching lower bound of n^{3 - o(1)} bits for sketching cuts in general submodular hypergraphs. 3) (1 ± ε) monotone submodular hypergraph cut sparsification on n vertices efficiently reduces to (1 ± ε) symmetric submodular hypergraph sparsification on n+1 vertices. Using the work of Jambulapati et. al. (FOCS 2023) this gives us monotone submodular hypergraph sparsifiers with Õ(n / ε²) hyperedges, improving on the O(n³ / ε²) hyperedge bound of Kenneth and Krauthgamer (arxiv 2023). At a high level, our results use the same general principle, namely, by showing that cuts in one class of hypergraphs can be simulated by cuts in a simpler class of hypergraphs, we can leverage sparsification results for the simpler class of hypergraphs. 
    more » « less
  4. Recently, a number of variants of the notion of cut-preserving hypergraph sparsification have been studied in the literature. These variants include directed hypergraph sparsification, submodular hypergraph sparsification, general notions of approximation including spectral approximations, and more general notions like sketching that can answer cut queries using more general data structures than just sparsifiers. In this work, we provide reductions between these different variants of hypergraph sparsification and establish new upper and lower bounds on the space complexity of preserving their cuts. Specifically, we show that: 1) (1 ± ε) directed hypergraph spectral (respectively cut) sparsification on n vertices efficiently reduces to (1 ± ε) undirected hypergraph spectral (respectively cut) sparsification on n² + 1 vertices. Using the work of Lee and Jambulapati, Liu, and Sidford (STOC 2023) this gives us directed hypergraph spectral sparsifiers with O(n² log²(n) / ε²) hyperedges and directed hypergraph cut sparsifiers with O(n² log(n)/ ε²) hyperedges by using the work of Chen, Khanna, and Nagda (FOCS 2020), both of which improve upon the work of Oko, Sakaue, and Tanigawa (ICALP 2023). 2) Any cut sketching scheme which preserves all cuts in any directed hypergraph on n vertices to a (1 ± ε) factor (for ε = 1/(2^{O(√{log(n)})})) must have worst-case bit complexity n^{3 - o(1)}. Because directed hypergraphs are a subclass of submodular hypergraphs, this also shows a worst-case sketching lower bound of n^{3 - o(1)} bits for sketching cuts in general submodular hypergraphs. 3) (1 ± ε) monotone submodular hypergraph cut sparsification on n vertices efficiently reduces to (1 ± ε) symmetric submodular hypergraph sparsification on n+1 vertices. Using the work of Jambulapati et. al. (FOCS 2023) this gives us monotone submodular hypergraph sparsifiers with Õ(n / ε²) hyperedges, improving on the O(n³ / ε²) hyperedge bound of Kenneth and Krauthgamer (arxiv 2023). At a high level, our results use the same general principle, namely, by showing that cuts in one class of hypergraphs can be simulated by cuts in a simpler class of hypergraphs, we can leverage sparsification results for the simpler class of hypergraphs. 
    more » « less
  5. Recently, a number of variants of the notion of cut-preserving hypergraph sparsification have been studied in the literature. These variants include directed hypergraph sparsification, submodular hypergraph sparsification, general notions of approximation including spectral approximations, and more general notions like sketching that can answer cut queries using more general data structures than just sparsifiers. In this work, we provide reductions between these different variants of hypergraph sparsification and establish new upper and lower bounds on the space complexity of preserving their cuts. Specifically, we show that: 1) (1 ± ε) directed hypergraph spectral (respectively cut) sparsification on n vertices efficiently reduces to (1 ± ε) undirected hypergraph spectral (respectively cut) sparsification on n² + 1 vertices. Using the work of Lee and Jambulapati, Liu, and Sidford (STOC 2023) this gives us directed hypergraph spectral sparsifiers with O(n² log²(n) / ε²) hyperedges and directed hypergraph cut sparsifiers with O(n² log(n)/ ε²) hyperedges by using the work of Chen, Khanna, and Nagda (FOCS 2020), both of which improve upon the work of Oko, Sakaue, and Tanigawa (ICALP 2023). 2) Any cut sketching scheme which preserves all cuts in any directed hypergraph on n vertices to a (1 ± ε) factor (for ε = 1/(2^{O(√{log(n)})})) must have worst-case bit complexity n^{3 - o(1)}. Because directed hypergraphs are a subclass of submodular hypergraphs, this also shows a worst-case sketching lower bound of n^{3 - o(1)} bits for sketching cuts in general submodular hypergraphs. 3) (1 ± ε) monotone submodular hypergraph cut sparsification on n vertices efficiently reduces to (1 ± ε) symmetric submodular hypergraph sparsification on n+1 vertices. Using the work of Jambulapati et. al. (FOCS 2023) this gives us monotone submodular hypergraph sparsifiers with Õ(n / ε²) hyperedges, improving on the O(n³ / ε²) hyperedge bound of Kenneth and Krauthgamer (arxiv 2023). At a high level, our results use the same general principle, namely, by showing that cuts in one class of hypergraphs can be simulated by cuts in a simpler class of hypergraphs, we can leverage sparsification results for the simpler class of hypergraphs. 
    more » « less