We introduce a notion of code sparsification that generalizes the notion of cut sparsification in graphs. For a (linear) code C ⊆ 𝔽nq of dimension k a (1 ± ɛ)-sparsification of size s is given by a weighted set S ⊆ [n] with |S| ≤ s such that for every codeword c ∈ C the projection c|s of c to the set S has (weighted) hamming weight which is a (1 ± ɛ) approximation of the hamming weight of c. We show that for every code there exists a (1 ± ɛ)-sparsification of size s = Õ(k log(q)/ɛ2). This immediately implies known results on graph and hypergraph cut sparsification up to polylogarithmic factors (with a simple unified proof) — the former follows from the well-known fact that cuts in a graph form a linear code over 𝔽2, while the latter is obtained by a simple encoding of hypergraph cuts. Further, by connections between the eigenvalues of the Laplacians of Cayley graphs over to the weights of codewords, we also give the first proof of the existence of spectral Cayley graph sparsifiers over by Cayley graphs, i.e., where we sparsify the set of generators to nearly-optimal size. Additionally, this work can be viewed as a continuation of a line of works on building sparsifiers for constraint satisfaction problems (CSPs); this result shows that there exist near-linear size sparsifiers for CSPs over 𝔽p-valued variables whose unsatisfying assignments can be expressed as the zeros of a linear equation modulo a prime p. As an application we give a full characterization of ternary Boolean CSPs (CSPs where the underlying predicate acts on three Boolean variables) that allow for near-linear size sparsification. This makes progress on a question posed by Kogan and Krauthgamer (ITCS 2015) asking which CSPs allow for near-linear size sparsifiers (in the number of variables). At the heart of our result is a codeword counting bound that we believe is of independent interest. Indeed, extending Karger's cut-counting bound (SODA 1993), we show a novel decomposition theorem of linear codes: we show that every linear code has a (relatively) small subset of coordinates such that after deleting those coordinates, the code on the remaining coordinates has a smooth upper bound on the number of codewords of small weight. Using the deleted coordinates in addition to a (weighted) random sample of the remaining coordinates now allows us to sparsify the whole code. The proof of this decomposition theorem extends Karger's proof (and the contraction method) in a clean way, while enabling the extensions listed above without any additional complexity in the proofs.
more »
« less
Code Sparsification and its Applications
We introduce a notion of code sparsification that generalizes the notion of cut sparsification in graphs. For a (linear) code C ⊆ 𝔽nq of dimension k a (1 ± ɛ)-sparsification of size s is given by a weighted set S ⊆ [n] with |S| ≤ s such that for every codeword c ∈ C the projection c|s of c to the set S has (weighted) hamming weight which is a (1 ± ɛ) approximation of the hamming weight of c. We show that for every code there exists a (1 ± ɛ)-sparsification of size s = Õ(k log(q)/ɛ2). This immediately implies known results on graph and hypergraph cut sparsification up to polylogarithmic factors (with a simple unified proof) — the former follows from the well-known fact that cuts in a graph form a linear code over 𝔽2, while the latter is obtained by a simple encoding of hypergraph cuts. Further, by connections between the eigenvalues of the Laplacians of Cayley graphs over to the weights of codewords, we also give the first proof of the existence of spectral Cayley graph sparsifiers over by Cayley graphs, i.e., where we sparsify the set of generators to nearly-optimal size. Additionally, this work can be viewed as a continuation of a line of works on building sparsifiers for constraint satisfaction problems (CSPs); this result shows that there exist near-linear size sparsifiers for CSPs over 𝔽p-valued variables whose unsatisfying assignments can be expressed as the zeros of a linear equation modulo a prime p. As an application we give a full characterization of ternary Boolean CSPs (CSPs where the underlying predicate acts on three Boolean variables) that allow for near-linear size sparsification. This makes progress on a question posed by Kogan and Krauthgamer (ITCS 2015) asking which CSPs allow for near-linear size sparsifiers (in the number of variables). At the heart of our result is a codeword counting bound that we believe is of independent interest. Indeed, extending Karger's cut-counting bound (SODA 1993), we show a novel decomposition theorem of linear codes: we show that every linear code has a (relatively) small subset of coordinates such that after deleting those coordinates, the code on the remaining coordinates has a smooth upper bound on the number of codewords of small weight. Using the deleted coordinates in addition to a (weighted) random sample of the remaining coordinates now allows us to sparsify the whole code. The proof of this decomposition theorem extends Karger's proof (and the contraction method) in a clean way, while enabling the extensions listed above without any additional complexity in the proofs.
more »
« less
- Award ID(s):
- 2152413
- PAR ID:
- 10574548
- Publisher / Repository:
- Society for Industrial and Applied Mathematics
- Date Published:
- ISBN:
- 978-1-61197-791-2
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Woodruff, David P. (Ed.)Graph sparsification has been an important topic with many structural and algorithmic consequences. Recently hypergraph sparsification has come to the fore and has seen exciting progress. In this paper we take a fresh perspective and show that they can be both be derived as corollaries of a general theorem on sparsifying matroids and monotone submodular functions. Quotients of matroids and monotone submodular functions generalize k-cuts in graphs and hypergraphs. We show that a weighted ground set of a monotone submodular function f can be sparsified while approximately preserving the weight of every quotient of f with high probability in randomized polynomial time. This theorem conceptually unifies cut sparsifiers for undirected graphs [BK15] with other interesting applications. One basic application is to reduce the number of elements in a matroid while preserving the weight of every quotient of the matroid. For hypergraphs, the theorem gives an alternative approach to the hypergraph cut sparsifiers obtained recently in [CKN20], that also preserves all k-cuts. Another application is to reduce the number of points in a set system while preserving the weight of the union of every collection of sets. We also present algorithms that sparsify hypergraphs and set systems in nearly linear time, and sparsify matroids in nearly linear time and queries in the rank oracle model.more » « less
-
CSP sparsification, introduced by Kogan and Krauthgamer (ITCS 2015), considers the following question: how much can an instance of a constraint satisfaction problem be sparsified (by retaining a reweighted subset of the constraints) while still roughly capturing the weight of constraints satisfied by {\em every} assignment. CSP sparsification captures as a special case several well-studied problems including graph cut-sparsification, hypergraph cut-sparsification, hypergraph XOR-sparsification, and corresponds to a general class of hypergraph sparsification problems where an arbitrary 0/1-valued {\em splitting function} is used to define the notion of cutting a hyperedge (see, for instance, Veldt-Benson-Kleinberg SIAM Review 2022). The main question here is to understand, for a given constraint predicate P:Σr→{0,1} (where variables are assigned values in Σ), the smallest constant c such that O˜(nc) sized sparsifiers exist for every instance of a constraint satisfaction problem over P. A recent work of Khanna, Putterman and Sudan (SODA 2024) [KPS24] showed {\em existence} of near-linear size sparsifiers for new classes of CSPs. In this work (1) we significantly extend the class of CSPs for which nearly linear-size sparsifications can be shown to exist while also extending the scope to settings with non-linear-sized sparsifications; (2) we give a polynomial-time algorithm to extract such sparsifications for all the problems we study including the first efficient sparsification algorithms for the problems studied in [KPS24].more » « less
-
null (Ed.)The problem of sparsifying a graph or a hypergraph while approximately preserving its cut structure has been extensively studied and has many applications. In a seminal work, Benczúr and Karger (1996) showed that given any n-vertex undirected weighted graph G and a parameter ε ∈ (0,1), there is a near-linear time algorithm that outputs a weighted subgraph G' of G of size Õ(n/ε²) such that the weight of every cut in G is preserved to within a (1 ± ε)-factor in G'. The graph G' is referred to as a (1 ± ε)-approximate cut sparsifier of G. Subsequent recent work has obtained a similar result for the more general problem of hypergraph cut sparsifiers. However, all known sparsification algorithms require Ω(n + m) time where n denotes the number of vertices and m denotes the number of hyperedges in the hypergraph. Since m can be exponentially large in n, a natural question is if it is possible to create a hypergraph cut sparsifier in time polynomial in n, independent of the number of edges. We resolve this question in the affirmative, giving the first sublinear time algorithm for this problem, given appropriate query access to the hypergraph. Specifically, we design an algorithm that constructs a (1 ± ε)-approximate cut sparsifier of a hypergraph H(V,E) in polynomial time in n, independent of the number of hyperedges, when given access to the hypergraph using the following two queries: 1) given any cut (S, ̄S), return the size |δ_E(S)| (cut value queries); and 2) given any cut (S, ̄S), return a uniformly at random edge crossing the cut (cut edge sample queries). Our algorithm outputs a sparsifier with Õ(n/ε²) edges, which is essentially optimal. We then extend our results to show that cut value and cut edge sample queries can also be used to construct hypergraph spectral sparsifiers in poly(n) time, independent of the number of hyperedges. We complement the algorithmic results above by showing that any algorithm that has access to only one of the above two types of queries can not give a hypergraph cut sparsifier in time that is polynomial in n. Finally, we show that our algorithmic results also hold if we replace the cut edge sample queries with a pair neighbor sample query that for any pair of vertices, returns a random edge incident on them. In contrast, we show that having access only to cut value queries and queries that return a random edge incident on a given single vertex, is not sufficient.more » « less
-
Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)Recently, a number of variants of the notion of cut-preserving hypergraph sparsification have been studied in the literature. These variants include directed hypergraph sparsification, submodular hypergraph sparsification, general notions of approximation including spectral approximations, and more general notions like sketching that can answer cut queries using more general data structures than just sparsifiers. In this work, we provide reductions between these different variants of hypergraph sparsification and establish new upper and lower bounds on the space complexity of preserving their cuts. Specifically, we show that: 1) (1 ± ε) directed hypergraph spectral (respectively cut) sparsification on n vertices efficiently reduces to (1 ± ε) undirected hypergraph spectral (respectively cut) sparsification on n² + 1 vertices. Using the work of Lee and Jambulapati, Liu, and Sidford (STOC 2023) this gives us directed hypergraph spectral sparsifiers with O(n² log²(n) / ε²) hyperedges and directed hypergraph cut sparsifiers with O(n² log(n)/ ε²) hyperedges by using the work of Chen, Khanna, and Nagda (FOCS 2020), both of which improve upon the work of Oko, Sakaue, and Tanigawa (ICALP 2023). 2) Any cut sketching scheme which preserves all cuts in any directed hypergraph on n vertices to a (1 ± ε) factor (for ε = 1/(2^{O(√{log(n)})})) must have worst-case bit complexity n^{3 - o(1)}. Because directed hypergraphs are a subclass of submodular hypergraphs, this also shows a worst-case sketching lower bound of n^{3 - o(1)} bits for sketching cuts in general submodular hypergraphs. 3) (1 ± ε) monotone submodular hypergraph cut sparsification on n vertices efficiently reduces to (1 ± ε) symmetric submodular hypergraph sparsification on n+1 vertices. Using the work of Jambulapati et. al. (FOCS 2023) this gives us monotone submodular hypergraph sparsifiers with Õ(n / ε²) hyperedges, improving on the O(n³ / ε²) hyperedge bound of Kenneth and Krauthgamer (arxiv 2023). At a high level, our results use the same general principle, namely, by showing that cuts in one class of hypergraphs can be simulated by cuts in a simpler class of hypergraphs, we can leverage sparsification results for the simpler class of hypergraphs.more » « less
An official website of the United States government

