Microfluidic cell sorters have shown great potential to revolutionize the current technique of enriching rare cells. In the past decades, different microfluidic cell sorters have been developed by researchers for separating circulating tumor cells, T-cells, and other biological markers from blood samples. However, it typically takes months or even years to design these microfluidic cell sorters by hand. Thus, researchers tend to use computer simulation (usually finite element analysis) to verify their designs before fabrication and experimental testing. Despite this, conducting precision finite element analysis of microfluidic devices is computationally expensive and labor-intensive. To address this issue, we recently presented a microfluidic simulation method that can simulate the behavior of fluids and particles in some typical microfluidic chips instantaneously. Our method decomposes the chip into channels and intersections. The behavior of fluid in each channel is determined by leveraging analogies with electronic circuits, and the behavior of fluid and particles in each intersection is determined by querying a database containing 92,934 pre-simulated channel intersections. While this approach successfully predicts the behavior of complex microfluidic chips in a fraction of the time required by existing techniques, we nonetheless identified three major limitations with this method: (1) the library of pre-simulated channel intersections is unnecessarily large (only 2,072 of 92,934 were used); (2) the library contains only cross-shaped intersections (and no other intersection geometries); and (3) the range of fluid flow rates in the library is limited to 0 to 2 cm/s. To address these deficiencies, in this work we present an improved method for instantaneously simulating the trajectories of particles in microfluidic chips. Firstly, inspired by dynamic programming, our new method optimizes the generation of pre-simulated intersection units and avoids generating unnecessary simulations. Secondly, we constructed a cloud database (http://cloud.microfluidics.cc) to share our pre-simulated results and to let users become contributors and upload their simulation results into the cloud database as a benefit to the whole microfluidic simulation community. Lastly, we investigated the impact of different channel angles and different fluid flow rates on predicting the trajectories of particles. We found a wide range of device geometries and flow rates over which our existing simulation results can be extended without having to perform additional simulations. Our method should accelerate the simulation of particles in microfluidic chips and enable researchers to design new microfluidic cell sorter chips more efficiently.
more »
« less
This content will become publicly available on November 19, 2025
Common Food-Wrap Film as a Cost-Effective and Readily Available Alternative to Thermoplastic Polyurethane (TPU) Membranes for Microfluidics On-Chip Valves and Pumps
Recently, there has been an increasing effort in developing new fabrication methods for rapid prototyping of microfluidic chips using laser cutting and 3D printing. However, although these approaches can readily generate rigid parts of the devices, it is not trivial to integrate flexible components (e.g. on-chip valve and/or pump membranes) within the same build. This has led to the recent adoption of thermoplastic polyurethane (TPU) membranes sandwiched between the rigid layers to introduce the necessary flexibility to the chips. Despite its utility, TPU is not without its challenges—it is relatively expensive and surprisingly difficult to source. To overcome these difficulties, our study introduces the use of common food wrapping film as a cost-effective and readily available alternative to TPU, demonstrating its compatibility in fabricating essential microfluidic components such as on-chip valves and peristaltic pumps. Our findings show that this alternative maintains the performance standards required for sophisticated microfluidic applications while significantly alleviating logistical and financial constraints. The results show high cyclability of the membrane, up to 850,000 in continuous testing conditions, at 1 Hz, while also can block the fluid flow at as low as 250 kPa. Regarding the micropumps, it was shown that adequate flow rate of around 4 μL/min can be achieved.
more »
« less
- Award ID(s):
- 2141029
- PAR ID:
- 10574707
- Publisher / Repository:
- engrxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- New Jersey Institute of Technology
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Microfluidic valves play a key role within microfluidic systems by regulating fluid flow through distinct microchannels, enabling many advanced applications in medical diagnostics, lab‐on‐chips, and laboratory automation. While microfluidic systems are often limited to planar structures, 3D printing enables new capabilities to generate complex designs for fluidic circuits with higher densities and integrated components. However, the control of fluids within 3D structures presents several difficulties, making it challenging to scale effectively and many fluidic devices are still often restricted to quasi‐planar structures. Incorporating mechanical metamaterials that exhibit spatially adjustable mechanical properties into microfluidic systems provides an opportunity to address these challenges. Here, systematic computational and experimental characterization of a modified re‐entrant honeycomb structure are performed to generate a modular metamaterial for an active device that allows us to directly regulate flow through integrated, multiplexed fluidic channels “one‐at‐a‐time,” in a manner that is highly scalable. A design algorithm is presented, so that this architecture can be extended to arbitrary geometries, and it is expected that by incorporation of mechanical metamaterial designs into 3D printed fluidic systems, which themselves are readily expandable to any complex geometries, will enable new biotechnological and biomedical applications of 3D printed devices.more » « less
-
Electrowetting-on-dielectric (EWOD) has been extensively explored as an active-type technology for small-scale liquid handling due to its several unique advantages, including no requirement of mechanical components, low power consumption, and rapid response time. However, conventional EWOD devices are often accompanied with complex fabrication processes for patterning and wiring of 2D arrayed electrodes. Furthermore, their sandwich device configuration makes integration with other microfluidic components difficult. More recently, optoelectrowetting (OEW), a light-driven mechanism for effective droplet manipulation, has been proposed as an alternative approach to overcome these issues. By utilizing optical addressing on a photoconductive surface, OEW can dynamically control an electrowetting phenomenon without the need for complex control circuitry on a chip, while providing higher functionality and flexibility. Using commercially available spatial light modulators such as LCD displays and smartphones, millions of optical pixels are readily generated to modulate virtual electrodes for large-scale droplet manipulations in parallel on low-cost OEW devices. The benefits of the OEW mechanism have seen it being variously explored in its potential biological and biochemical applications. This review article presents the fundamentals of OEW, discusses its research progress and limitations, highlights various technological advances and innovations, and finally introduces the emergence of the OEW technology as portable smartphone-integrated environmental sensors.more » « less
-
In this work, we propose a novel approach for the real-time estimation of chip-level spatial power maps for commercial Google Coral M.2 TPU chips based on a machine-learning technique for the first time. The new method can enable the development of more robust runtime power and thermal control schemes to take advantage of spatial power information such as hot spots that are otherwise not available. Different from the existing commercial multi-core processors in which real-time performance-related utilization information is available, the TPU from Google does not have such information. To mitigate this problem, we propose to use features that are related to the workloads of running different deep neural networks (DNN) such as the hyperparameters of DNN and TPU resource information generated by the TPU compiler. The new approach involves the offline acquisition of accurate spatial and temporal temperature maps captured from an external infrared thermal imaging camera under nominal working conditions of a chip. To build the dynamic power density map model, we apply generative adversarial networks (GAN) based on the workload-related features. Our study shows that the estimated total powers match the manufacturer's total power measurements extremely well. Experimental results further show that the predictions of power maps are quite accurate, with the RMSE of only 4.98\rm mW/mm^2, or 2.6\% of the full-scale error. The speed of deploying the proposed approach on an Intel Core i7-10710U is as fast as 6.9ms, which is suitable for real-time estimation.more » « less
-
Microphysiological systems (MPS) incorporate physiologically relevant microanatomy, mechanics, and cells to mimic tissue function. Reproducible and standardized in vitro models of tissue barriers, such as the blood-tissue interface (BTI), are critical for next-generation MPS applications in research and industry. Many models of the BTI are limited by the need for semipermeable membranes, use of homogenous cell populations, or 2D culture. These factors limit the relevant endothelial-epithelial contact and 3D transport, which would best mimic the BTI. Current models are also difficult to assemble, requiring precise alignment and layering of components. The work reported herein details the engineering of a BTI-on-a-chip (BTI Chip) that addresses current disadvantages by demonstrating a single layer, membrane-free design. Laminar flow profiles, photocurable hydrogel scaffolds, and human cell lines were used to construct a BTI Chip that juxtaposes an endothelium in direct contact with a 3D engineered tissue. A biomaterial composite, gelatin methacryloyl and 8-arm polyethylene glycol thiol, was used for in situ fabrication of a tissue structure within a Y-shaped microfluidic device. To produce the BTI, a laminar flow profile was achieved by flowing a photocurable precursor solution alongside phosphate buffered saline. Immediately after stopping flow, the scaffold underwent polymerization through a rapid exposure to UV light (<300 mJ/cm2). After scaffold formation, blood vessel endothelial cells were introduced and allowed to adhere directly to the 3D tissue scaffold, without barriers or phase guides. Fabrication of the BTI Chip was demonstrated in both an epithelial tissue model and blood-brain barrier (BBB) model. In the epithelial model, scaffolds were seeded with human dermal fibroblasts. For the BBB models, scaffolds were seeded with the immortalized glial cell line, SVGP12. The BTI Chip microanatomy was analyzed post facto by immunohistochemistry, showing the uniform production of a patent endothelium juxtaposed with a 3D engineered tissue. Fluorescent tracer molecules were used to characterize the permeability of the BTI Chip. The BTI Chips were challenged with an efflux pump inhibitor, cyclosporine A, to assess physiological function and endothelial cell activation. Operation of physiologically relevant BTI Chips and a novel means for high-throughput MPS generation was demonstrated, enabling future development for drug candidate screening and fundamental biological investigations.more » « less
An official website of the United States government
