Formal reasoning about hashing-based probabilistic data structures often requires reasoning about random variables where when one variable gets larger (such as the number of elements hashed into one bucket), the others tend to be smaller (like the number of elements hashed into the other buckets). This is an example ofnegative dependence, a generalization of probabilistic independence that has recently found interesting applications in algorithm design and machine learning. Despite the usefulness of negative dependence for the analyses of probabilistic data structures, existing verification methods cannot establish this property for randomized programs. To fill this gap, we design LINA, a probabilistic separation logic for reasoning about negative dependence. Following recent works on probabilistic separation logic usingseparating conjunctionto reason about the probabilistic independence of random variables, we use separating conjunction to reason about negative dependence. Our assertion logic features two separating conjunctions, one for independence and one for negative dependence. We generalize the logic of bunched implications (BI) to support multiple separating conjunctions, and provide a sound and complete proof system. Notably, the semantics for separating conjunction relies on anon-deterministic, rather than partial, operation for combining resources. By drawing on closure properties for negative dependence, our program logic supports a Frame-like rule for negative dependence andmonotoneoperations. We demonstrate how LINA can verify probabilistic properties of hash-based data structures and balls-into-bins processes.
more »
« less
This content will become publicly available on January 7, 2026
Bluebell: An Alliance of Relational Lifting and Independence for Probabilistic Reasoning
We present Bluebell, a program logic for reasoning about probabilistic programs where unary and relational styles of reasoning come together to create new reasoning tools. Unary-style reasoning is very expressive and is powered by foundational mechanisms to reason about probabilistic behavior likeindependenceandconditioning. The relational style of reasoning, on the other hand, naturally shines when the properties of interestcomparethe behavior of similar programs (e.g. when proving differential privacy) managing to avoid having to characterize the output distributions of the individual programs. So far, the two styles of reasoning have largely remained separate in the many program logics designed for the deductive verification of probabilistic programs. In Bluebell, we unify these styles of reasoning through the introduction of a new modality called “joint conditioning” that can encode and illuminate the rich interaction betweenconditional independenceandrelational liftings; the two powerhouses from the two styles of reasoning.
more »
« less
- Award ID(s):
- 2153916
- PAR ID:
- 10574792
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 9
- Issue:
- POPL
- ISSN:
- 2475-1421
- Page Range / eLocation ID:
- 1719 to 1749
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Relational cost analysis aims at formally establishing bounds on the difference in the evaluation costs of two programs. As a particular case, one can also use relational cost analysis to establish bounds on the difference in the evaluation cost of the same program on two different inputs. One way to perform relational cost analysis is to use a relational type-and-effect system that supports reasoning about relations between two executions of two programs. Building on this basic idea, we present a type-and-effect system, called ARel, for reasoning about the relative cost of array-manipulating, higher-order functional-imperative programs. The key ingredient of our approach is a new lightweight type refinement discipline that we use to track relations (differences) between two mutable arrays. This discipline combined with Hoare-style triples built into the types allows us to express and establish precise relative costs of several interesting programs which imperatively update their data. We have implemented ARel using ideas from bidirectional type checking.more » « less
-
Abstract This work is devoted to formal reasoning on relational properties of probabilistic imperative programs. Relational properties are properties which relate the execution of two programs (possibly the same one) on two initial memories. We aim at extending the algebraic approach of Kleene Algebras with Tests (KAT) to relational properties of probabilistic programs. For that we consider the approach of Guarded Kleene Algebras with Tests (GKAT), which can be used for representing probabilistic programs, and define a relational version of it, called Bi-guarded Kleene Algebras with Tests (BiGKAT) together with a semantics. We show that the setting of BiGKAT is expressive enough to encode a finitary version of probabilistic Relational Hoare Logic (pRHL) (without the While rule), a program logic that has been introduced in the literature for the verification of relational properties of probabilistic programs. We also discuss the additional expressivity brought by BiGKAT.more » « less
-
Properties such as provable security and correctness for randomized programs are naturally expressed relationally as approximate equivalences. As a result, a number of relational program logics have been developed to reason about such approximate equivalences of probabilistic programs. However, existing approximate relational logics are mostly restricted to first-order programs without general state. In this paper we develop Approxis, a higher-order approximate relational separation logic for reasoning about approximate equivalence of programs written in an expressive ML-like language with discrete probabilistic sampling, higher-order functions, and higher-order state. The Approxis logic recasts the concept of error credits in the relational setting to reason about relational approximation, which allows for expressive notions of modularity and composition, a range of new approximate relational rules, and an internalization of a standard limiting argument for showing exact probabilistic equivalences by approximation. We also use Approxis to develop a logical relation model that quantifies over error credits, which can be used to prove exact contextual equivalence. We demonstrate the flexibility of our approach on a range of examples, including the PRP/PRF switching lemma, IND$-CPA security of an encryption scheme, and a collection of rejection samplers. All of the results have been mechanized in the Coq proof assistant and the Iris separation logic framework.more » « less
-
Probabilistic couplings are the foundation for many probabilistic relational program logics and arise when relating random sampling statements across two programs. In relational program logics, this manifests as dedicated coupling rules that, e.g., say we may reason as if two sampling statements return the same value. However, this approach fundamentally requires aligning or synchronizing the sampling statements of the two programs which is not always possible. In this paper, we develop Clutch, a higher-order probabilistic relational separation logic that addresses this issue by supporting asynchronous probabilistic couplings. We use Clutch to develop a logical step-indexed logical relation to reason about contextual refinement and equivalence of higher-order programs written in a rich language with a probabilistic choice operator, higher-order local state, and impredicative polymorphism. Finally, we demonstrate our approach on a number of case studies. All the results that appear in the paper have been formalized in the Coq proof assistant using the Coquelicot library and the Iris separation logic framework.more » « less
An official website of the United States government
