skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The first intron and promoter of Arabidopsis DIACYLGLYCEROL ACYLTRANSFERASE 1 exert synergistic effects on pollen and embryo lipid accumulation
Summary Accumulation of triacylglycerols (TAGs) is crucial during various stages of plant development. InArabidopsis, two enzymes share overlapping functions to produce TAGs, namely acyl‐CoA:diacylglycerol acyltransferase 1 (DGAT1) and phospholipid:diacylglycerol acyltransferase 1 (PDAT1). Loss of function of both genes in adgat1‐1/pdat1‐2double mutant is gametophyte lethal. However, the key regulatory elements controlling tissue‐specific expression of either gene has not yet been identified.We transformed adgat1‐1/dgat1‐1//PDAT1/pdat1‐2parent with transgenic constructs containing theArabidopsis DGAT1promoter fused to theAtDGAT1open reading frame either with or without the first intron.Triple homozygous plants were obtained, however, in the absence of theDGAT1first intron anthers fail to fill with pollen, seed yield isc. 10% of wild‐type, seed oil content remains reduced (similar todgat1‐1/dgat1‐1), and non‐Mendelian segregation of thePDAT1/pdat1‐2locus occurs. Whereas plants expressing theAtDGAT1pro:AtDGAT1transgene containing the first intron mostly recover phenotypes to wild‐type.This study establishes that a combination of the promoter and first intron ofAtDGAT1provides the proper context for temporal and tissue‐specific expression ofAtDGAT1in pollen. Furthermore, we discuss possible mechanisms of intron mediated regulation and how regulatory elements can be used as genetic tools to functionally replace TAG biosynthetic enzymes inArabidopsis.  more » « less
Award ID(s):
2242822
PAR ID:
10574967
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
245
Issue:
1
ISSN:
0028-646X
Format(s):
Medium: X Size: p. 263-281
Size(s):
p. 263-281
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary In seed plants, 1‐aminocyclopropane‐1‐carboxylic acid (ACC) is the precursor of the plant hormone ethylene but also has ethylene‐independent signaling roles. Nonseed plants produce ACC but do not efficiently convert it to ethylene. InArabidopsis thaliana, ACC is transported by amino acid transporters, LYSINE HISTIDINE TRANSPORTER 1 (LHT1) and LHT2. In nonseed plants,LHThomologs have been uncharacterized.Here, we isolated an ACC‐insensitive mutant (Mpain) that is defective in ACC uptake in the liverwortMarchantia polymorpha. Mpaincontained a frameshift mutation (1 bp deletion) in the MpLHT1coding sequence, and was complemented by expression of a wild‐type MpLHT1transgene. Additionally, ACC insensitivity was re‐created in CRISPR/Cas9‐Mplht1knockout mutants. We found that MpLHT1 can also transportl‐hydroxyproline andl‐histidine.We examined the physiological functions of MpLHT1in vegetative growth and reproduction based on mutant phenotypes. Mpainand Mplht1plants were smaller and developed fewer gemmae cups compared to wild‐type plants. Mplht1mutants also had reduced fertility, and archegoniophores displayed early senescence.These findings reveal that MpLHT1 serves as an ACC and amino acid transporter inM. polymorphaand has diverse physiological functions. We propose that MpLHT1 contributes to homeostasis of ACC and other amino acids inM. polymorphagrowth and reproduction. 
    more » « less
  2. Summary Integration ofAgrobacterium tumefacienstransferred DNA (T‐DNA) into the plant genome is the last step required for stable plant genetic transformation. The mechanism of T‐DNA integration remains controversial, although scientists have proposed the participation of various nonhomologous end‐joining (NHEJ) pathways. Recent evidence suggests that inArabidopsis, DNA polymerase θ (PolQ) may be a crucial enzyme involved in T‐DNA integration.We conducted quantitative transformation assays of wild‐type andpolQmutantArabidopsisand rice, analyzed T‐DNA/plant DNA junction sequences, and (forArabidopsis) measured the amount of integrated T‐DNA in mutant and wild‐type tissue.Unexpectedly, we were able to generate stable transformants of all tested lines, although the transformation frequency ofpolQmutants was c.20% that of wild‐type plants. T‐DNA/plant DNA junctions from these transformed rice andArabidopsis polQmutants closely resembled those from wild‐type plants, indicating that loss of PolQ activity does not alter the characteristics of T‐DNA integration events.polQmutant plants show growth and developmental defects, perhaps explaining previous unsuccessful attempts at their stable transformation.We suggest that either multiple redundant pathways function in T‐DNA integration, and/or that integration requires some yet unknown pathway. 
    more » « less
  3. Summary IRE1, BI‐1, and bZIP60 monitor compatible plant–potexvirus interactions though recognition of the viral TGB3 protein. This study was undertaken to elucidate the roles of threeIRE1isoforms, thebZIP60UandbZIP60S, andBI‐1roles in genetic reprogramming of cells during potexvirus infection.Experiments were performed usingArabidopsis thalianaknockout lines andPlantago asiatica mosaic virusinfectious clone tagged with the green fluorescent protein gene (PlAMV‐GFP).There were more PlAMV‐GFP infection foci inire1a/b,ire1c,bzip60, andbi‐1knockout than wild‐type (WT) plants. Cell‐to‐cell movement and systemic RNA levels were greaterbzip60andbi‐1than in WT plants. Overall, these data indicate an increased susceptibility to virus infection. Transgenic overexpression ofAtIRE1borStbZIP60inire1a/borbzip60mutant background reduced virus infection foci, whileStbZIP60expression influences virus movement. Transgenic overexpression ofStbZIP60also confers endoplasmic reticulum (ER) stress resistance following tunicamycin treatment. We also show bZIP60U and TGB3 interact at the ER.This is the first demonstration of a potatobZIPtranscription factor complementing genetic defects in Arabidopsis. Evidence indicates that the three IRE1 isoforms regulate the initial stages of virus replication and gene expression, while bZIP60 and BI‐1 contribute separately to virus cell‐to‐cell and systemic movement. 
    more » « less
  4. Summary Although most xyloglucans (XyGs) biosynthesis enzymes have been identified, the molecular mechanism that defines XyG branching patterns is unclear. Four out of five XyG xylosyltransferases (XXT1, XXT2, XXT4, and XXT5) are known to add the xylosyl residue from UDP‐xylose onto a glucan backbone chain; however, the function of XXT3 has yet to be demonstrated.Singlexxt3and triplexxt3xxt4xxt5mutantArabidopsis(Arabidopsis thaliana) plants were generated using CRISPR‐Cas9 technology to determine the specific function of XXT3.Combined biochemical, bioinformatic, and morphological data conclusively established for the first time that XXT3, together with XXT4 and XXT5, adds xylosyl residue specifically at the third glucose in the glucan chain to synthesize XXXG‐type XyGs. We propose that the specificity of XXT3, XXT4, and XXT5 is directed toward the prior synthesis of the acceptor substrate by the other two enzymes, XXT1 and XXT2. We also conclude that XXT5 plays a dominant role in the synthesis of XXXG‐type XyGs, while XXT3 and XXT4 complementarily contribute their activities in a tissue‐specific manner.The newly generatedxxt3xxt4xxt5mutant produces only XXGG‐type XyGs, which further helps to understand the impact of structurally deficient polysaccharides on plant cell wall organization, growth, and development. 
    more » « less
  5. Summary Isogenic individuals can display seemingly stochastic phenotypic differences, limiting the accuracy of genotype‐to‐phenotype predictions. The extent of this phenotypic variation depends in part on genetic background, raising questions about the genes involved in controlling stochastic phenotypic variation.Focusing on early seedling traits inArabidopsis thaliana, we found that hypomorphs of the cuticle‐related geneLIPID TRANSFER PROTEIN 2(LTP2) greatly increased variation in seedling phenotypes, including hypocotyl length, gravitropism and cuticle permeability. Manyltp2hypocotyls were significantly shorter than wild‐type hypocotyls while others resembled the wild‐type.Differences in epidermal properties and gene expression betweenltp2seedlings with long and short hypocotyls suggest a loss of cuticle integrity as the primary determinant of the observed phenotypic variation. We identified environmental conditions that reveal or mask the increased variation inltp2hypomorphs and found that increased expression of its closest paralogLTP1is necessary forltp2phenotypes.Our results illustrate how decreased expression of a single gene can generate starkly increased phenotypic variation in isogenic individuals in response to an environmental challenge. 
    more » « less