Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) and phospholipid:diacylglycerol acyltransferase 1 (PDAT1) share responsibility for triacylglycerol (TAG) biosynthesis, and their selectivities control TAG fatty acid (FA) compositions. For rational metabolic engineering of seed oils, replacing endogenous TAG biosynthesis with exogenous enzymes containing different substrate FA selectivities is desirable; however, the dgat1-1/pdat1-2 double mutant is pollen lethal. Here, we evaluated the ability of 3 DGAT1s, from phylogenetically diverse plants with distinct TAG assembly processes, to completely replace endogenous TAG biosynthesis in Arabidopsis (Arabidopsis thaliana). We transformed dgat1-1 mutant plants with expression constructs for DGAT1s from Camelina sativa, Physaria fendleri, and castor (Ricinus communis). Transgene expression was properly “contextualized” by using a previously determined minimum necessary expression unit containing the promoter/5′ UTR and first intron of native AtDGAT1; both of these DNA elements are essential for pollen expression. Next, we crossed homozygous lines with a DGAT1/DGAT1/PDAT1/pdat1-2 parent. C. sativa and P. fendleri DGAT1s restored the FA compositions and transcriptional differences of dgat1-1 to near wild-type and rescued the dgat1-1/pdat1-2 pollen lethality. R. communis DGAT1 was active in dgat1-1 seeds but produced unique oil profiles and alterations in the expression of lipid metabolic genes; it also failed to rescue dgat1-1/pdat1-2 lethality. This study confirms that the promoter and first intron of AtDGAT1 can modulate the expression of foreign DGAT1 genes to fit the correct spatiotemporal profile necessary for completely replacing endogenous TAG biosynthesis. Furthermore, it demonstrates an additional layer of unexpected enzyme incompatibility between oilseed lineages, which may complicate bioengineering approaches that seek to replace essential genes with orthologs.more » « less
-
Abstract Plant lipids represent a fascinating field of scientific study, in part due to a stark dichotomy in the limited fatty acid (FA) composition of cellular membrane lipids vs the huge diversity of FAs that can accumulate in triacylglycerols (TAGs), the main component of seed storage oils. With few exceptions, the strict chemical, structural, and biophysical roles imposed on membrane lipids since the dawn of life have constrained their FA composition to predominantly lengths of 16–18 carbons and containing 0–3 methylene-interrupted carbon-carbon double bonds in cis-configuration. However, over 450 “unusual” FA structures can be found in seed oils of different plants, and we are just beginning to understand the metabolic mechanisms required to produce and maintain this dichotomy. Here we review the current state of plant lipid research, specifically addressing the knowledge gaps in membrane and storage lipid synthesis from 3 angles: pathway fluxes including newly discovered TAG remodeling, key acyltransferase substrate selectivities, and the possible roles of “metabolons.”more » « less
-
Summary Accumulation of triacylglycerols (TAGs) is crucial during various stages of plant development. InArabidopsis, two enzymes share overlapping functions to produce TAGs, namely acyl‐CoA:diacylglycerol acyltransferase 1 (DGAT1) and phospholipid:diacylglycerol acyltransferase 1 (PDAT1). Loss of function of both genes in adgat1‐1/pdat1‐2double mutant is gametophyte lethal. However, the key regulatory elements controlling tissue‐specific expression of either gene has not yet been identified.We transformed adgat1‐1/dgat1‐1//PDAT1/pdat1‐2parent with transgenic constructs containing theArabidopsis DGAT1promoter fused to theAtDGAT1open reading frame either with or without the first intron.Triple homozygous plants were obtained, however, in the absence of theDGAT1first intron anthers fail to fill with pollen, seed yield isc. 10% of wild‐type, seed oil content remains reduced (similar todgat1‐1/dgat1‐1), and non‐Mendelian segregation of thePDAT1/pdat1‐2locus occurs. Whereas plants expressing theAtDGAT1pro:AtDGAT1transgene containing the first intron mostly recover phenotypes to wild‐type.This study establishes that a combination of the promoter and first intron ofAtDGAT1provides the proper context for temporal and tissue‐specific expression ofAtDGAT1in pollen. Furthermore, we discuss possible mechanisms of intron mediated regulation and how regulatory elements can be used as genetic tools to functionally replace TAG biosynthetic enzymes inArabidopsis.more » « less
-
Abstract Typical plant membranes and storage lipids are comprised of five common fatty acids yet over 450 unusual fatty acids accumulate in seed oils of various plant species. Plant oils are important human and animal nutrients, while some unusual fatty acids such as hydroxylated fatty acids (HFA) are used in the chemical industry (lubricants, paints, polymers, cosmetics, etc.). Most unusual fatty acids are extracted from non-agronomic crops leading to high production costs. Attempts to engineer HFA into crops are unsuccessful due to bottlenecks in the overlapping pathways of oil and membrane lipid synthesis where HFA are not compatible.Physaria fendlerinaturally overcomes these bottlenecks through a triacylglycerol (TAG) remodeling mechanism where HFA are incorporated into TAG after initial synthesis. TAG remodeling involves a unique TAG lipase and two diacylglycerol acyltransferases (DGAT) that are selective for different stereochemical and acyl-containing species of diacylglycerol within a synthesis, partial degradation, and resynthesis cycle. The TAG lipase interacts with DGAT1, localizes to the endoplasmic reticulum (with the DGATs) and to puncta around the lipid droplet, likely forming a TAG remodeling metabolon near the lipid droplet-ER junction. Each characterized DGAT and TAG lipase can increase HFA accumulation in engineered seed oils.more » « less
-
Free, publicly-accessible full text available March 29, 2026
An official website of the United States government
