skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variation in induced responses in volatile and non-volatile metabolites among six willow species: Do willow species share responses to herbivory?
Award ID(s):
2240430
PAR ID:
10575038
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier: Phytochemistry
Date Published:
Journal Name:
Phytochemistry
Volume:
226
Issue:
C
ISSN:
0031-9422
Page Range / eLocation ID:
114222
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Herbivore-induced plant volatile (HIPV)-mediated eavesdropping by plants is a well-documented, inducible phenomenon that has practical agronomic applications for enhancing plant defense and pest management. However, as with any inducible phenomenon, responding to volatile cues may incur physiological and ecological costs that limit plant productivity. In a common garden experiment, we tested the hypothesis that exposure to a single HIPV would decrease herbivore damage at the cost of reduced plant growth and reproduction. Lima bean (Phaseolus lunatus) and pepper (Capsicum annuum) plants were exposed to a persistent, low dose (~10 ng/h) of the green leaf volatile cis-3-hexenyl acetate (z3HAC), which is a HIPV and damage-associated volatile. z3HAC-treated pepper plants were shorter, had less aboveground and belowground biomass, and produced fewer flowers and fruits relative to controls, while z3HAC-treated lima bean plants were taller and produced more leaves and flowers than did controls. Natural herbivory was reduced in z3HAC-exposed lima bean plants, but not in pepper. Cyanogenic potential, a putative direct defense mechanism in lima bean, was lower in young z3HAC-exposed leaves, suggesting a growth–defense tradeoff from z3HAC exposure alone. Plant species-specific responses to an identical volatile cue have important implications for agronomic costs and benefits of volatile-mediated interplant communication under field conditions. 
    more » « less
  2. Abstract Evolution in nature occurs in the proverbial tangled bank. The species interactions characterizing this tangled bank can be strongly affected by global change and can also influence the fitness and selective effects of a global change on a focal population. As a result, species interactions can influence which traits will promote adaptation and the magnitude or direction of evolutionary responses to the global change. First, we provide a framework describing how species interactions may influence evolutionary responses to global change. Then, we highlight case studies that have explicitly manipulated both a global change and the presence or abundance of interacting species and used either experimental evolution or quantitative genetics approaches to test for the effects of species interactions on evolutionary responses to global change. Although still not frequently considered, we argue that species interactions commonly modulate the effects of global change on the evolution of plant and animal populations. As a result, predicting the evolutionary effects of the multitude of global changes facing natural populations requires both community ecology and evolutionary perspectives. 
    more » « less
  3. Abstract Diverse specialised metabolites contributed to the success of vascular plants in colonising most terrestrial habitats. Understanding how distinct aspects of chemical diversity arise through heterogeneous environmental pressures can help us understand the effects of abiotic and biotic stress on plant evolution and community assembly. We examined highland and lowland willow species within a phylogenetic framework to test for trends in their chemical α‐diversity (richness) and β‐diversity (variation among species sympatric in elevation). We show that differences in chemistry among willows growing at different elevations occur mainly through shifts in chemical β‐diversity and due to convergence or divergence among species sharing their elevation level. We also detect contrasting phylogenetic trends in concentration and α‐diversity of metabolites in highland and lowland willow species. The resulting elevational patterns contribute to the chemical diversity of willows and suggest that variable selective pressure across ecological gradients may, more generally, underpin complex changes in plant chemistry. 
    more » « less