skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The natural history of luck: A synthesis study of structured population models
Abstract: Chance pervades life. In turn, life histories are described by probabilities (e.g. survival and breeding) and averages across individuals (e.g. mean growth rate and age at maturity). In this study, we explored patterns of luck in lifetime outcomes by analysing structured population models for a wide array of plant and animal species. We calculated four response variables: variance and skewness in both lifespan and lifetime reproductive output (LRO), and partitioned them into contributions from different forms of luck. We examined relationships among response variables and a variety of life history traits. We found that variance in lifespan and variance in LRO were positively correlated across taxa, but that variance and skewness were negatively correlated for both lifespan and LRO. The most important life history trait was longevity, which shaped variance and skew in LRO through its effects on variance in lifespan. We found that luck in survival, growth, and fecundity all contributed to variance in LRO, but skew in LRO was overwhelmingly due to survival luck. Rapidly growing populations have larger variances in LRO and lifespan than shrinking populations. Our results indicate that luck‐induced genetic drift may be most severe in recovering populations of species with long mature lifespan and high iteroparity.  more » « less
Award ID(s):
1933497 1933612
PAR ID:
10575092
Author(s) / Creator(s):
; ; ;
Editor(s):
Heino, Mikko
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology Letters
Volume:
27
Issue:
3
ISSN:
1461-023X
Subject(s) / Keyword(s):
individual stochasticity integral projection model life history lifetime reproductive output longevity luck matrix population model pace of life reproductive skew traits
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kisdi, Éva; Akçay, Erol (Ed.)
    In many species, a few individuals produce most of the next generation. How much of this reproductive skew is driven by variation among individuals in fixed traits, how much by external factors, and how much by random chance? And what does it take to have truly exceptional lifetime reproductive output (LRO)? In the past, we and others have partitioned the variance of LRO as a proxy for reproductive skew. Here we explain how to partition LRO skewness itself into contributions from fixed trait variation, four forms of “demographic luck” (birth state, fecundity luck, survival trajectory luck, and growth trajectory luck), and two kinds of “environmental luck” (birth environment and environment trajectory). Each of these is further partitioned into contributions at different ages.We also determine what we can infer about individuals with exceptional LRO. We find that reproductive skew is largely driven by random variation in lifespan, and exceptional LRO generally results from exceptional lifespan. Other kinds of luck frequently bring skewness down rather than increasing it. In populations where fecundity varies greatly with environmental conditions, getting a good year at the right time can be an alternate route to exceptional LRO, so that LRO is less predictive of lifespan. 
    more » « less
  2. null (Ed.)
    Over the course of individual lifetimes, luck usually explains a large fraction of the between-individual variation in life span or lifetime reproductive output (LRO) within a population, while variation in individual traits or “quality” explains much less. To understand how, where in the life cycle, and through which demographic processes luck trumps trait variation, we show how to partition by age the contributions of luck and trait variation to LRO variance and how to quantify three distinct components of luck. We apply these tools to several empirical case studies. We find that luck swamps effects of trait variation at all ages, primarily because of randomness in individual state dynamics (“state trajectory luck”). Luck early in life is most important. Very early state trajectory luck generally determines whether an individual ever breeds, likely by ensuring that they are not dead or doomed quickly. Less early luck drives variation in success among those breeding at least once. Consequently, the importance of luck often has a sharp peak early in life or it has two peaks. We suggest that ages or stages where the importance luck peaks are potential targets for interventions to benefit a population of concern, different from those identified by eigenvalue elasticity analysis. 
    more » « less
  3. Abstract Environmental factors and individual attributes, and their interactions, impact survival, growth and reproduction of an individual throughout its life. In the clonal rotiferBrachionus, low food conditions delay reproduction and extend lifespan. This species also exhibits maternal effect senescence; the offspring of older mothers have lower survival and reproductive output. In this paper, we explored the population consequences of the individual‐level interaction of maternal age and low food availability.We built matrix population models for both ad libitum and low food treatments, in which individuals are classified both by their age and maternal age. Low food conditions reduced population growth rate () and shifted the population structure to older maternal ages, but did not detectably impact individual lifetime reproductive output.We analysed hypothetical scenarios in which reduced fertility or survival led to approximately stationary populations that maintained the shape of the difference in demographic rates between the ad libitum and low food treatments. When fertility was reduced, the populations were more evenly distributed across ages and maternal ages, while the lower‐survival models showed an increased concentration of individuals in the youngest ages and maternal ages.Using life table response experiment analyses, we compared populations grown under ad libitum and low food conditions in scenarios representing laboratory conditions, reduced fertility and reduced survival. In the laboratory scenario, the reduction in population growth rate under low food conditions is primarily due to decreased fertility in early life. In the lower‐fertility scenario, contributions from differences in fertility and survival are more similar, and show trade‐offs across both ages and maternal ages. In the lower‐survival scenario, the contributions from decreased fertility in early life again dominate the difference in .These results demonstrate that processes that potentially benefit individuals (e.g. lifespan extension) may actually reduce fitness and population growth because of links with other demographic changes (e.g. delayed reproduction). Because the interactions of maternal age and low food availability depend on the population structure, the fitness consequences of an environmental change can only be fully understood through analysis that takes into account the entire life cycle. 
    more » « less
  4. Abstract Understanding the evolutionary mechanisms underlying the maintenance of individual differences in behavior and physiology is a fundamental goal in ecology and evolution. The pace‐of‐life syndrome hypothesis is often invoked to explain the maintenance of such within‐population variation. This hypothesis predicts that behavioral traits are part of a suite of correlated traits that collectively determine an individual's propensity to prioritize reproduction or survival. A key assumption of this hypothesis is that these traits are underpinned by genetic trade‐offs among life‐history traits: genetic variants that increase fertility, reproduction and growth might also reduce lifespan. We performed a systematic literature review and meta‐analysis to summarize the evidence for the existence of genetic trade‐offs between five key life‐history traits: survival, growth rate, body size, maturation rate, and fertility. Counter to our predictions, we found an overall positive genetic correlation between survival and other life‐history traits and no evidence for any genetic correlations between the non‐survival life‐history traits. This finding was generally consistent across pairs of life‐history traits, sexes, life stages, lab vs. field studies, and narrow‐ vs. broad‐sense correlation estimates. Our study highlights that genetic trade‐offs may not be as common, or at least not as easily quantifiable, in animals as often assumed. 
    more » « less
  5. How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species,Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life-history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1200 km, we found limited variation in upper thermal tolerance between populations. In particular, the upper thermal limits of all life-history traits varied by less than 3°C across the species range and, for most traits, did not differ significantly between populations. For one life-history trait—pupal development rate—we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found that maximum environmental temperatures across most of the species' range already regularly exceed the highest upper thermal limits estimated under constant temperatures. This result suggests that strategies for coping with and/or avoiding thermal extremes are likely key components of current and future mosquito thermal tolerance. 
    more » « less