ABSTRACT Studying declining and rare species is inherently challenging, particularly when the cause of rarity is emerging infectious diseases (EIDs). Tracking changes in the distribution of pathogens that cause EIDs, and the species made scarce by them, is necessary for conservation efforts, but it is often a time and resource intensive task. Here, we demonstrate how using environmental DNA (eDNA) to detect rare species—and the pathogens that threaten them—can be a powerful tool to understand disease dynamics and develop effective conservation strategies. Amphibian populations around the world have undergone rapid declines and extinctions due to the emerging fungal pathogen,Batrachochytrium dendrobatidis(Bd). We developed and validated a qPCR assay using eDNA sampling methods for some of the most imperiled amphibian species, harlequin frogs (Atelopus varius,Atelopus zeteki,andAtelopus chiriquiensis), and applied this assay in concert with a standard qPCR assay forBdin rainforest streams of Panamá. We confirmed the presence ofAtelopusat sampling locations across three regions. In addition, we used genomic analysis of eDNA samples to show thatBdin Panamá falls within the Global Panzootic Lineage, a lineage associated with disease‐induced declines. We detectedBdDNA in most of our historic sites, and its concentration in water samples correlated with stream characteristics and the pathogen load of the local amphibian community. These results suggest that some populations ofAtelopuspersist in their historic localities. They also show how eDNA analysis can be effectively used for monitoring species presence, pathogen concentrations, and the distribution and spread of pathogen lineages. EIDs are a growing threat to endangered species around the world. Simultaneous detection of rare and declining host species and their pathogens with eDNA will help to provide key insights for effective conservation management.
more »
« less
This content will become publicly available on February 28, 2026
SDM meets eDNA: optimal sampling of environmental DNA to estimate species–environment relationships in stream networks
Species distribution models (SDMs) are frequently data-limited. In aquatic habitats, emerging environmental DNA (eDNA) sampling methods can be quicker and more cost-efficient than traditional count and capture surveys, but their utility for fitting SDMs is complicated by dilution, transport, and loss processes that modulate DNA concentrations and mix eDNA from different locations. Past models for estimating organism densities from measured species-specific eDNA concentrations have accounted for how these processes affect expected concentrations. We built off this previous work to construct a linear hierarchical model that also accounts for how they give rise to spatially correlated concentration errors. We applied our model to 60 simulated stream networks and three types of species niches in order to answer two questions: 1) what is the D-optimal sampling design, i.e. where should eDNA samples be positioned to most precisely estimate species–environment relationships? and 2) How does parameter estimation accuracy depend on the stream network’s topological and hydrologic properties? We found that correcting for eDNA dynamics was necessary to obtain consistent parameter estimates, and that relative to a heuristic benchmark design, optimizing sampling locations improved design efficiency by an average of 41.5%. Samples in the D-optimal design tended to be positioned near downstream ends of stream reaches high in the watershed, where eDNA concentration was high and mostly from homogeneous source areas, and they collectively spanned the full ranges of covariates. When measurement error was large, it was often optimal to collect replicate samples from high-information reaches. eDNA-based estimates of species–environment regression parameters were most precise in stream networks that had many reaches, large geographic size, slow flows, and/or high eDNA loss rates. Our study demonstrates the importance and viability of accounting for eDNA dilution, transport, and loss in order to optimize sampling designs and improve the accuracy of eDNA-based species distribution models.
more »
« less
- Award ID(s):
- 1933497
- PAR ID:
- 10575093
- Editor(s):
- Rangel, Thiago F
- Publisher / Repository:
- Nordic Society Oikos
- Date Published:
- Journal Name:
- Ecography
- Volume:
- 2025
- ISSN:
- 1600-0587
- Page Range / eLocation ID:
- e07644
- Subject(s) / Keyword(s):
- abundance environmental DNA optimal sampling design spatial autocorrelation species distribution model stream network
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The integration of environmental DNA (eDNA) within management strategies for lotic organisms requires translating eDNA detection and quantification data into inferences of the locations and abundances of target species. Understanding how eDNA is distributed in space and time within the complex environments of rivers and streams is a major factor in achieving this translation. Here we study bidimensional eDNA signals in streams to predict the position and abundance of Atlantic salmon ( Salmo salar ) juveniles. We use data from sentinel cages with a range of abundances (3–63 juveniles) that were deployed in three coastal streams in New Brunswick, Canada. We evaluate the spatial patterns of eDNA dispersal and determine the effect of discharge on the dilution rate of eDNA. Our results show that eDNA exhibits predictable plume dynamics downstream from sources, with eDNA being initially concentrated and transported in the midstream, but eventually accumulating in stream margins with time and distance. From these findings we developed a fish detection and distribution prediction model based on the eDNA ratio in midstream versus bankside sites for a variety of fish distribution scenarios. Finally, we advise that sampling midstream at every 400 m is sufficient to detect a single fish at low velocity, but sampling efforts need to be increased at higher water velocity (every 100 m in the systems surveyed in this study). Studying salmon eDNA spatio-temporal patterns in lotic environments is essential to developing strong quantitative population assessment models that successfully leverage eDNA as a tool to protect salmon populations.more » « less
-
Abstract Collecting environmental DNA (eDNA) as a nonlethal sampling approach has been valuable in detecting the presence/absence of many imperiled taxa; however, its application to indicate species abundance poses many challenges. A deeper understanding of eDNA dynamics in aquatic systems is required to better interpret the substantial variability often associated with eDNA samples. Our sampling design took advantage of natural variation in juvenile Atlantic salmon (Salmo salar) distribution and abundance along 9 km of a single river in the Province of New Brunswick (Canada), covering different spatial and temporal scales to address the unknown seasonal impacts of environmental variables on the quantitative relationship between eDNA concentration and species abundance. First, we asked whether accounting for environmental variables strengthened the relationship between eDNA and salmon abundance by sampling eDNA during their spring seaward migration. Second, we asked how environmental variables affected eDNA dynamics during the summer as the parr abundance remained relatively constant. Spring eDNA samples were collected over a 6‐week period (12 times) near a rotary screw trap that captured approximately 18.6% of migrating smolts, whereas summer sampling occurred (i) at three distinct salmon habitats (9 times) and (ii) along the full 9 km (3 times). We modeled eDNA concentration as a product of fish abundance and environmental variables, demonstrating that (1) with inclusion of abundance and environmental covariates, eDNA was highly correlated with spring smolt abundance and (2) the relationships among environmental covariates and eDNA were affected by seasonal variation with relatively constant parr abundance in summer. Our findings underscore that with appropriate study design that accounts for seasonal environmental variation and life history phenology, eDNA salmon population assessments may have the potential to evaluate abundance fluctuations in spring and summer.more » « less
-
Environmental DNA (eDNA) is an ideal way of researching aquatic environments and determining whatspecies are present in an area the biodiversity of an area, and if any invasive or endangered species arepresent. Traditional sampling of eDNA consists of manually filtering water, which is labor and cost-intensive for remote locations. Furthermore, commercialized solutions are either expensive or require a field operator to function. We have built a battery-powered eDNA sampler capable of autonomous multi-sampling for a greatly reduced price compared to existing technologies. Environmental DNA collection contains 3 main components: environmental DNA must be preserved, the filtered volume must be accurate, and there must be no cross-contamination between samples. The sampler operates in this way separating eDNA via filters, preserving DNA, and recording the filtered volume per sample. Our PolyWAG eDNA sampler system is a water sampling device that collects DNA samples via 47mm filter and provides a non-invasive, safe and autonomous means of eDNA collection. The sampler can hold 24 filters and is designed to be easily replaced and reusable. A browser application is used for real-time monitoring, scheduling tasks, and data logging for time, pressure, flow, and filtered volume. Additionally, the sampler design is openly published, modular and is constantly being tested to help us optimize our software and hardware to give us the best results. The 13-step sampling sequence helps reduce cross contamination significantly. Our machine can be deployed for an extended period. It is completely autonomous and costs around $3800 for components or $6000 including labor.more » « less
-
Abstract Environmental managers need a rapid and cost‐effective monitoring tool for tracking the spread of invasive species, particularly at the onset of introduction. The macroalgaeCaulerpa proliferais considered an invasive species outside its native range, colonizing large patches of seafloor, reducing native species, and altering ecosystem functioning. Here, we developed a droplet digital PCR assay for detection ofC. proliferafrom environmental DNA seawater samples using the internal transcribed spacer (ITS) region. While the assay itself was confirmed to be highly efficient, we discovered concentrations ofC. proliferaeDNA were present below detectable levels in the water column surrounding an outbreak. To understand why, we conducted tank‐based experiments for two California invasive algae species,Caulerpa proliferaandSargassum horneri. The steady‐state eDNA concentration (eDNA copies/ gram of biomass detected) ofC. proliferawas found to be two orders of magnitude lower thanS. horneri. A meta‐analysis of steady‐state concentrations reported in the literature showed a remarkable range from ~104–1011(copies/g), revealing C. proliferato have the lowest recorded steady‐state concentrations of eDNA of any known species. We attributeC. prolifera'slow steady‐state eDNA concentration to its unique biology as a unicellular macroscopic algae which reduces the possible modes of eDNA release compared to similarly sized multicellular organisms. Critically our results demonstrate the potential limits of eDNA approaches, the influence of shedding rates in the reliability of species detections, and the vital importance of benchmarking and validating eDNA assays in both field and laboratory settings.more » « less
An official website of the United States government
