skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using Environmental DNA Sampling for Simultaneous Detection of Hosts and Their Pathogens: A Case Study With the Critically Endangered Frog Genus Atelopus
ABSTRACT Studying declining and rare species is inherently challenging, particularly when the cause of rarity is emerging infectious diseases (EIDs). Tracking changes in the distribution of pathogens that cause EIDs, and the species made scarce by them, is necessary for conservation efforts, but it is often a time and resource intensive task. Here, we demonstrate how using environmental DNA (eDNA) to detect rare species—and the pathogens that threaten them—can be a powerful tool to understand disease dynamics and develop effective conservation strategies. Amphibian populations around the world have undergone rapid declines and extinctions due to the emerging fungal pathogen,Batrachochytrium dendrobatidis(Bd). We developed and validated a qPCR assay using eDNA sampling methods for some of the most imperiled amphibian species, harlequin frogs (Atelopus varius,Atelopus zeteki,andAtelopus chiriquiensis), and applied this assay in concert with a standard qPCR assay forBdin rainforest streams of Panamá. We confirmed the presence ofAtelopusat sampling locations across three regions. In addition, we used genomic analysis of eDNA samples to show thatBdin Panamá falls within the Global Panzootic Lineage, a lineage associated with disease‐induced declines. We detectedBdDNA in most of our historic sites, and its concentration in water samples correlated with stream characteristics and the pathogen load of the local amphibian community. These results suggest that some populations ofAtelopuspersist in their historic localities. They also show how eDNA analysis can be effectively used for monitoring species presence, pathogen concentrations, and the distribution and spread of pathogen lineages. EIDs are a growing threat to endangered species around the world. Simultaneous detection of rare and declining host species and their pathogens with eDNA will help to provide key insights for effective conservation management.  more » « less
Award ID(s):
1846403 2120084
PAR ID:
10572026
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Animal Conservation
ISSN:
1367-9430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The Indo‐Pacific lionfish,Pterois volitans,is an invasive species in the western Atlantic. Since its introduction to Florida in the early 1980s, populations have surged with lionfish now found from North Carolina to Venezuela. As their range expands, these generalist predators threaten native fauna, and while they are primarily a marine species, their tolerance for low salinity conditions may allow them to expand into sensitive estuarine habitats undetected. Traditional approaches for tracking invasive species such as direct observation or trapping are impractical over large spatial scales, making environmental DNA (eDNA) an attractive alternative. Molecular assays, such as those employing quantitative polymerase chain reaction (qPCR), amplify low copy number DNA fragments in environmental samples and are increasingly employed as a complement to traditional methods for the detection of invasive species. Currently, there is one published PCR assay for the detection of lionfish eDNA. However, the specificity of this assay is unverified, and the critical performance parameters limit of detection (LOD) and limit of quantification (LOQ) have not been established. Here we evaluate the efficacy of this assay and show that it is likely to result in false negatives in the western Atlantic. As an alternative, we developed a new TaqMan probe‐based qPCR assay that is species‐specific forP. volitansand highly sensitive with a LOD of 12 copies per reaction and a LOQ of 598 copies per reaction. While our assay does not amplify the closely relatedP. miles, which was also introduced in the western Atlantic, the low prevalence of this species in the invasive population means our assay is effective for most monitoring purposes. We conclude that our assay is a robust method for the detection of lionfish and can be employed in any habitat, offering new opportunities for controlling the spread of invasive lionfish. 
    more » « less
  2. Abstract Avoiding extinction in a rapidly changing environment often relies on a species’ ability to quickly adapt in the face of extreme selective pressures. In Panamá, two closely related harlequin frog species (Atelopus variusandAtelopus zeteki) are threatened with extinction due to the fungal pathogenBatrachochytrium dendrobatidis(Bd). Once thought to be nearly extirpated from Panamá,A. variushave recently been rediscovered in multiple localities across their historical range; however,A. zetekiare possibly extinct in the wild. By leveraging a unique collection of 186Atelopustissue samples collected before and after theBdoutbreak in Panama, we describe the genetics of persistence for these species on the brink of extinction. We sequenced the transcriptome and developed an exome‐capture assay to sequence the coding regions of theAtelopusgenome. Using these genetic data, we evaluate the population genetic structure of historicalA. variusandA. zetekipopulations, describe changes in genetic diversity over time, assess the relationship between contemporary and historical individuals, and test the hypothesis that someA. variuspopulations have rapidly evolved to resist or tolerateBdinfection. We found a significant decrease in genetic diversity in contemporary (compared to historical)A. variuspopulations. We did not find strong evidence of directional allele frequency change or selection forBdresistance genes, but we uncovered a set of candidate genes that warrant further study. Additionally, we found preliminary evidence of recent migration and gene flow in one of the largest persistingA. variuspopulations in Panamá, suggesting the potential for genetic rescue in this system. Finally, we propose that previous conservation units should be modified, as clear genetic breaks do not exist beyond the local population level. Our data lay the groundwork for genetically informed conservation and advance our understanding of how imperiled species might be rescued from extinction. 
    more » « less
  3. Abstract Copy number variation (CNV) is a major part of the genetic diversity segregating within populations, but remains poorly understood relative to single nucleotide variation. Here, we report on atRNAligase gene (Migut.N02091;RLG1a) exhibiting unprecedented, and fitness‐relevant,CNVwithin an annual population of the yellow monkeyflowerMimulus guttatus.RLG1a variation was associated with multiple traits in pooled population sequencing (PoolSeq) scans of phenotypic and phenological cohorts. Resequencing of inbred lines revealed intermediate‐frequency three‐copy variants ofRLG1a (trip+;5/35 = 14%), andtrip+lines exhibited elevatedRLG1a expression under multiple conditions.trip+carriers, in addition to being over‐represented in late‐flowering and large‐flowered PoolSeq populations, flowered later under stressful conditions in a greenhouse experiment (p < 0.05). In wild population samples, we discovered an additional rareRLG1a variant (high+) that carries 250–300 copies ofRLG1a totalling ~5.7 Mb (20–40% of a chromosome). In the progeny of ahigh+carrier, Mendelian segregation of diagnostic alleles andqPCR‐based copy counts indicate thathigh+is a single tandem array unlinked to the single‐copyRLG1a locus. In the wild,high+carriers had highest fitness in two particularly dry and/or hot years (2015 and 2017; bothp < 0.01), while single‐copy individuals were twice as fecund as eitherCNVtype in a lush year (2016:p < 0.005). Our results demonstrate fluctuating selection onCNVs affecting phenological traits in a wild population, suggest that planttRNAligases mediate stress‐responsive life‐history traits, and introduce a novel system for investigating the molecular mechanisms of gene amplification. 
    more » « less
  4. The fungal pathogen Batrachochytrium dendrobatidis ( Bd ) is implicated in global mass die-offs and declines in amphibians. In Mesoamerica, the Bd epidemic wave hypothesis is supported by detection of Bd in historic museum specimens collected over the last century, yet the timing and impact of the early stages of the wave remain poorly understood. Chiropterotriton magnipes , the only obligate troglodytic Neotropical salamander, was abundant in its small range in the decade following its description in 1965, but subsequently disappeared from known localities and was not seen for 34 years. Its decline is roughly coincident with that of other populations of Neotropical salamanders associated with the invasion and spread of Bd . To determine the presence and infection intensity of Bd on C. magnipes and sympatric amphibian species (which are also Bd hosts), we used a noninvasive sampling technique and qPCR assay to detect Bd on museum specimens of C. magnipes collected from 1952 to 2012, and from extant populations of C. magnipes and sympatric species of amphibians. We also tested for the presence of the recently discovered Batrachochytrium salamandivorans ( Bsal ), another fungal chytridiomycete pathogen of salamanders, using a similar technique specific for Bsal . We did not detect Bd in populations of C. magnipes before 1969, while Bd was detected at low to moderate prevalence just prior to and during declines. This pattern is consistent with Bd -caused epizootics followed by host declines and extirpations described in other hosts. We did not detect Bsal in any extant population of C. magnipes . We obtained one of the earliest positive records of the fungus to date in Latin America, providing additional historical evidence consistent with the Bd epidemic wave hypothesis. Genotyping results show that at least one population is currently infected with the Global Panzootic Lineage of Bd , but our genotyping of the historical positive samples was unsuccessful. The lack of large samples from some years and the difficulty in genotyping historical Bd samples illustrate some of the difficulties inherent in assigning causality to historical amphibian declines. These data also provide an important historical baseline for actions to preserve the few known remaining populations of C. magnipes . 
    more » « less
  5. ABSTRACT Helminths infect humans, livestock, and wildlife, yet remain understudied despite their significant impact on public health and agriculture. Because many of the most prevalent helminth‐borne diseases are zoonotic, understanding helminth transmission among wildlife could improve predictions and management of infection risks across species. A key challenge to understanding helminth transmission dynamics in wildlife is accurately and quantitatively tracking parasite load across hosts and environments. Traditional methods, such as visual parasite identification from environmental samples or infected hosts, are time‐consuming, while standard molecular techniques (e.g., PCR and qPCR) often lack the sensitivity to reliably detect lower parasite burdens. These limitations can underestimate the prevalence and severity of infection, hindering efforts to manage infectious diseases. Here, we developed a multiplexed droplet digital PCR (ddPCR) assay to quantify helminth loads in aquatic habitats using 18S rRNA target genes. UsingSchistocephalus solidusand their copepod hosts as a case study, we demonstrate ddPCR's sensitivity and precision. The assay is highly reproducible, reliably detecting target genes at concentrations as low as 1 pg of DNA in lab standards and field samples (multi‐species and eDNA). Thus, we provide a toolkit for quantifying parasite load in intermediate hosts and monitoring infection dynamics across spatio‐temporal scales in multiple helminth systems of concern for public health, agriculture, and conservation biology. 
    more » « less