Recent shifts in the understanding of how the mind and brain retain information in working memory (WM) call for revision to traditional theories. Evidence of dynamic, “activity-silent,” short-term retention processes diverges from conventional models positing that information is always retained in WM by sustained neural activity in buffers. Such evidence comes from machine-learning methods that can decode patterns of brain activity and the simultaneous administration of transcranial magnetic stimulation (TMS) to causally manipulate brain activity in specific areas and time points. TMS can “ping” brain areas to both reactivate latent representations retained in WM and affect memory performance. On the basis of these findings, I argue for a supplement to sustained retention mechanisms. Brain-decoding methods also reveal that dynamic levels of representational codes are retained in WM, and these vary according to task context, from perceptual (sensory) codes in posterior areas to abstract, recoded representations distributed across frontoparietal regions. A dynamic-processing model of WM is advanced to account for the overall pattern of results.
more »
« less
This content will become publicly available on December 9, 2025
Advancing working memory research through cortico-cortical transcranial magnetic stimulation
The neural underpinnings of working memory (WM) have been of continuous scientific interest for decades. As the understanding of WM progresses and new theories, such as the distributed view of WM, develop, the need to advance the methods used to study WM also arises. This perspective discusses how building from the state-of-the-art in the field of transcranial magnetic stimulation (TMS), and utilising cortico-cortical TMS, may pave the way for testing some of the predictions proposed by the distributed WM view. Further, after briefly discussing current barriers that need to be overcome for implementing cortico-cortical TMS for WM research, examples of how cortico-cortical TMS may be employed in the context of WM research are provided, guided by the ongoing debate on the sensory recruitment framework.
more »
« less
- Award ID(s):
- 2050833
- PAR ID:
- 10575096
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Human Neuroscience
- Volume:
- 18
- ISSN:
- 1662-5161
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper we propose a novel neurostimulation protocol that provides an intervention-based assessment to distinguish the contributions of different motor control networks in the cortico-spinal system. Specifically, we use a combination of non-invasive brain stimulation and neuromuscular stimulation to probe neuromuscular system behavior with targeted impulse-response system identification. In this protocol, we use an in-house developed human-machine interface (HMI) for an isotonic wrist movement task, where the user controls a cursor on-screen. During the task, we generate unique motor evoked potentials based on triggered cortical or spinal level perturbations. Externally applied brain-level perturbations are triggered through TMS to cause wrist flexion/extension during the volitional task. The resultant contraction output and related reflex responses are measured by the HMI. These movements also include neuromodulation in the excitability of the brain-muscle pathway via transcranial direct current stimulation. Colloquially, spinal-level perturbations are triggered through skin-surface neuromuscular stimulation of the wrist muscles. The resultant brain-muscle and spinal-muscle pathways perturbed by the TMS and NMES, respectively, demonstrate temporal and spatial differences as manifested through the human-machine interface. This then provides a template to measure the specific neural outcomes of the movement tasks, and in decoding differences in the contribution of cortical- (long-latency) and spinal-level (short-latency) motor control. This protocol is part of the development of a diagnostic tool that can be used to better understand how interaction between cortical and spinal motor centers changes with learning, or injury such as that experienced following stroke.more » « less
-
Abstract Objective. Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation method that is used to study brain function and conduct neuropsychiatric therapy. Computational methods that are commonly used for electric field (E-field) dosimetry of TMS are limited in accuracy and precision because of possible geometric errors introduced in the generation of head models by segmenting medical images into tissue types. This paper studies E-field prediction fidelity as a function of segmentation accuracy. Approach. The errors in the segmentation of medical images into tissue types are modeled as geometric uncertainty in the shape of the boundary between tissue types. For each tissue boundary realization, we then use an in-house boundary element method to perform a forward propagation analysis and quantify the impact of tissue boundary uncertainties on the induced cortical E-field. Main results. Our results indicate that predictions of E-field induced in the brain are negligibly sensitive to segmentation errors in scalp, skull and white matter (WM), compartments. In contrast, E-field predictions are highly sensitive to possible cerebrospinal fluid (CSF) segmentation errors. Specifically, the segmentation errors on the CSF and gray matter interface lead to higher E-field uncertainties in the gyral crowns, and the segmentation errors on CSF and WM interface lead to higher uncertainties in the sulci. Furthermore, the uncertainty of the average cortical E-fields over a region exhibits lower uncertainty relative to point-wise estimates. Significance. The accuracy of current cortical E-field simulations is limited by the accuracy of CSF segmentation accuracy. Other quantities of interest like the average of the E-field over a cortical region could provide a dose quantity that is robust to possible segmentation errors.more » « less
-
N100, the negative peak of electrical response occurring around 100 ms, is present in diverse functional paradigms including auditory, visual, somatic, behavioral and cognitive tasks. We hypothesized that the presence of the N100 across different paradigms may be indicative of a more general property of the cerebral cortex regardless of functional or anatomic specificity. To test this hypothesis, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to measure cortical excitability by TMS across cortical regions without relying on specific sensory, cognitive or behavioral modalities. The five stimulated regions included left prefrontal, left motor, left primary auditory cortices, the vertex and posterior cerebellum with stimulations performed using supra- and subthreshold intensities. EEG responses produced by TMS stimulation at the five locations all generated N100s that peaked at the vertex. The amplitudes of the N100s elicited by these five diverse cortical origins were statistically not significantly different (all uncorrected p > 0.05). No other EEG response components were found to have this global property of N100. Our findings suggest that anatomy- and modality-specific interpretation of N100 should be carefully evaluated, and N100 by TMS may be used as a bio-marker for evaluating local versus general cortical properties across the brain.more » « less
-
Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation method that modulates brain activity by inducing electric fields in the brain. Real-time, state-dependent stimulation with TMS has shown that neural oscillation phase modulates corticospinal excitability. However, such motor evoked potentials (MEPs) only indirectly reflect motor cortex activation and are unavailable at other brain regions of interest. The direct and secondary cortical effects of phase-dependent brain stimulation remain an open question. In this study, we recorded the cortical responses during single-pulse TMS using electroencephalography (EEG) concurrently with the MEP measurements in 20 healthy human volunteers (11 female). TMS was delivered at peak, rising, trough, and falling phases of mu (8–13 Hz) and beta (14–30 Hz) oscillations in the motor cortex. The cortical responses were quantified through TMS evoked potential components N15, P50, and N100 as peak-to-peak amplitudes (P50-N15 and P50-N100). We further analyzed whether the prestimulus frequency band power was predictive of the cortical responses. We demonstrated that phase-specific targeting modulates cortical responses. The phase relationship between cortical responses was different for early and late responses. In addition, pre-TMS mu oscillatory power and phase significantly predicted both early and late cortical EEG responses in mu-specific targeting, indicating the independent causal effects of phase and power. However, only pre-TMS beta power significantly predicted the early and late TEP components during beta-specific targeting. Further analyses indicated distinct roles of mu and beta power on cortical responses. These findings provide insight to mechanistic understanding of neural oscillation states in cortical and corticospinal activation in humans.more » « less
An official website of the United States government
