skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uncertainty quantification of TMS simulations considering MRI segmentation errors
Abstract Objective. Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation method that is used to study brain function and conduct neuropsychiatric therapy. Computational methods that are commonly used for electric field (E-field) dosimetry of TMS are limited in accuracy and precision because of possible geometric errors introduced in the generation of head models by segmenting medical images into tissue types. This paper studies E-field prediction fidelity as a function of segmentation accuracy. Approach. The errors in the segmentation of medical images into tissue types are modeled as geometric uncertainty in the shape of the boundary between tissue types. For each tissue boundary realization, we then use an in-house boundary element method to perform a forward propagation analysis and quantify the impact of tissue boundary uncertainties on the induced cortical E-field. Main results. Our results indicate that predictions of E-field induced in the brain are negligibly sensitive to segmentation errors in scalp, skull and white matter (WM), compartments. In contrast, E-field predictions are highly sensitive to possible cerebrospinal fluid (CSF) segmentation errors. Specifically, the segmentation errors on the CSF and gray matter interface lead to higher E-field uncertainties in the gyral crowns, and the segmentation errors on CSF and WM interface lead to higher uncertainties in the sulci. Furthermore, the uncertainty of the average cortical E-fields over a region exhibits lower uncertainty relative to point-wise estimates. Significance. The accuracy of current cortical E-field simulations is limited by the accuracy of CSF segmentation accuracy. Other quantities of interest like the average of the E-field over a cortical region could provide a dose quantity that is robust to possible segmentation errors.  more » « less
Award ID(s):
2022040 1942928
PAR ID:
10350677
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Neural Engineering
Volume:
19
Issue:
2
ISSN:
1741-2560
Page Range / eLocation ID:
026022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The neural underpinnings of working memory (WM) have been of continuous scientific interest for decades. As the understanding of WM progresses and new theories, such as the distributed view of WM, develop, the need to advance the methods used to study WM also arises. This perspective discusses how building from the state-of-the-art in the field of transcranial magnetic stimulation (TMS), and utilising cortico-cortical TMS, may pave the way for testing some of the predictions proposed by the distributed WM view. Further, after briefly discussing current barriers that need to be overcome for implementing cortico-cortical TMS for WM research, examples of how cortico-cortical TMS may be employed in the context of WM research are provided, guided by the ongoing debate on the sensory recruitment framework. 
    more » « less
  2. Abstract Whole-head segmentation from Magnetic Resonance Images (MRI) establishes the foundation for individualized computational models using finite element method (FEM). This foundation paves the path for computer-aided solutions in fields such as non-invasive brain stimulation. Most current automatic head segmentation tools are developed using healthy young adults. Thus, they may neglect the older population that is more prone to age-related structural decline such as brain atrophy. In this work, we present a new deep learning method called GRACE, which stands for General, Rapid, And Comprehensive whole-hEad tissue segmentation. GRACE is trained and validated on a novel dataset that consists of 177 manually corrected MR-derived reference segmentations that have undergone meticulous manual review. Each T1-weighted MRI volume is segmented into 11 tissue types, including white matter, grey matter, eyes, cerebrospinal fluid, air, blood vessel, cancellous bone, cortical bone, skin, fat, and muscle. To the best of our knowledge, this work contains the largest manually corrected dataset to date in terms of number of MRIs and segmented tissues. GRACE outperforms five freely available software tools and a traditional 3D U-Net on a five-tissue segmentation task. On this task, GRACE achieves an average Hausdorff Distance of 0.21, which exceeds the runner-up at an average Hausdorff Distance of 0.36. GRACE can segment a whole-head MRI in about 3 seconds, while the fastest software tool takes about 3 minutes. In summary, GRACE segments a spectrum of tissue types from older adults’ T1-MRI scans at favorable accuracy and speed. The trained GRACE model is optimized on older adult heads to enable high-precision modeling in age-related brain disorders. To support open science, the GRACE code and trained weights are made available online and open to the research community at https://github.com/lab-smile/GRACE. 
    more » « less
  3. Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation method that modulates brain activity by inducing electric fields in the brain. Real-time, state-dependent stimulation with TMS has shown that neural oscillation phase modulates corticospinal excitability. However, such motor evoked potentials (MEPs) only indirectly reflect motor cortex activation and are unavailable at other brain regions of interest. The direct and secondary cortical effects of phase-dependent brain stimulation remain an open question. In this study, we recorded the cortical responses during single-pulse TMS using electroencephalography (EEG) concurrently with the MEP measurements in 20 healthy human volunteers (11 female). TMS was delivered at peak, rising, trough, and falling phases of mu (8–13 Hz) and beta (14–30 Hz) oscillations in the motor cortex. The cortical responses were quantified through TMS evoked potential components N15, P50, and N100 as peak-to-peak amplitudes (P50-N15 and P50-N100). We further analyzed whether the prestimulus frequency band power was predictive of the cortical responses. We demonstrated that phase-specific targeting modulates cortical responses. The phase relationship between cortical responses was different for early and late responses. In addition, pre-TMS mu oscillatory power and phase significantly predicted both early and late cortical EEG responses in mu-specific targeting, indicating the independent causal effects of phase and power. However, only pre-TMS beta power significantly predicted the early and late TEP components during beta-specific targeting. Further analyses indicated distinct roles of mu and beta power on cortical responses. These findings provide insight to mechanistic understanding of neural oscillation states in cortical and corticospinal activation in humans. 
    more » « less
  4. Medical image segmentation is one of the most challenging tasks in medical image analysis and has been widely developed for many clinical applications. Most of the existing metrics have been first designed for natural images and then extended to medical images. While object surface plays an important role in medical segmentation and quantitative analysis i.e. analyze brain tumor surface, measure gray matter volume, most of the existing metrics are limited when it comes to analyzing the object surface, especially to tell about surface smoothness or roughness of a given volumetric object or to analyze the topological errors. In this paper, we first analysis both pros and cons of all existing medical image segmentation metrics, specially on volumetric data. We then propose an appropriate roughness index and roughness distance for medical image segmentation analysis and evaluation. Our proposed method addresses two kinds of segmentation errors, i.e. (i) topological errors on boundary/surface and (ii) irregularities on the boundary/surface. The contribution of this work is four-fold: (i) detect irregular spikes/holes on a surface, (ii) propose roughness index to measure surface roughness of a given object, (iii) propose a roughness distance to measure the distance of two boundaries/surfaces by utilizing the proposed roughness index and (iv) suggest an algorithm which helps to remove the irregular spikes/holes to smooth the surface. Our proposed roughness index and roughness distance are built upon the solid surface roughness parameter which has been successfully developed in the civil engineering. 
    more » « less
  5. In this paper we propose a novel neurostimulation protocol that provides an intervention-based assessment to distinguish the contributions of different motor control networks in the cortico-spinal system. Specifically, we use a combination of non-invasive brain stimulation and neuromuscular stimulation to probe neuromuscular system behavior with targeted impulse-response system identification. In this protocol, we use an in-house developed human-machine interface (HMI) for an isotonic wrist movement task, where the user controls a cursor on-screen. During the task, we generate unique motor evoked potentials based on triggered cortical or spinal level perturbations. Externally applied brain-level perturbations are triggered through TMS to cause wrist flexion/extension during the volitional task. The resultant contraction output and related reflex responses are measured by the HMI. These movements also include neuromodulation in the excitability of the brain-muscle pathway via transcranial direct current stimulation. Colloquially, spinal-level perturbations are triggered through skin-surface neuromuscular stimulation of the wrist muscles. The resultant brain-muscle and spinal-muscle pathways perturbed by the TMS and NMES, respectively, demonstrate temporal and spatial differences as manifested through the human-machine interface. This then provides a template to measure the specific neural outcomes of the movement tasks, and in decoding differences in the contribution of cortical- (long-latency) and spinal-level (short-latency) motor control. This protocol is part of the development of a diagnostic tool that can be used to better understand how interaction between cortical and spinal motor centers changes with learning, or injury such as that experienced following stroke. 
    more » « less