Abstract Producing accurate weather prediction beyond two weeks is an urgent challenge due to its ever-increasing socioeconomic value. The Madden-Julian Oscillation (MJO), a planetary-scale tropical convective system, serves as a primary source of global subseasonal (i.e., targeting three to four weeks) predictability. During the past decades, operational forecasting systems have improved substantially, while the MJO prediction skill has not yet reached its potential predictability, partly due to the systematic errors caused by imperfect numerical models. Here, to improve the MJO prediction skill, we blend the state-of-the-art dynamical forecasts and observations with a Deep Learning bias correction method. With Deep Learning bias correction, multi-model forecast errors in MJO amplitude and phase averaged over four weeks are significantly reduced by about 90% and 77%, respectively. Most models show the greatest improvement for MJO events starting from the Indian Ocean and crossing the Maritime Continent.
more »
« less
Cross‐Attractor Transforms: Improving Forecasts by Learning Optimal Maps Between Dynamical Systems and Imperfect Models
Abstract Biased, incomplete numerical models are often used for forecasting states of complex dynamical systems by mapping an estimate of a “true” initial state into model phase space, making a forecast, and then mapping back to the “true” space. While advances have been made to reduce errors associated with model initialization and model forecasts, we lack a general framework for discovering optimal mappings between “true” dynamical systems and model phase spaces. Here, we propose using a data‐driven approach to infer these maps. Our approach consistently reduces errors in the Lorenz‐96 system with an imperfect model constructed to produce significant model errors compared to a reference configuration. Optimal pre‐ and post‐processing transforms leverage “shocks” and “drifts” in the imperfect model to make more skillful forecasts of the reference system. The implemented machine learning architecture using neural networks constructed with a custom analog‐adjoint layer makes the approach generalizable across applications.
more »
« less
- Award ID(s):
- 2152814
- PAR ID:
- 10575203
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 52
- Issue:
- 4
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The development of data-informed predictive models for dynamical systems is of widespread interest in many disciplines. We present a unifying framework for blending mechanistic and machine-learning approaches to identify dynamical systems from noisily and partially observed data. We compare pure data-driven learning with hybrid models which incorporate imperfect domain knowledge, referring to the discrepancy between an assumed truth model and the imperfect mechanistic model as model error. Our formulation is agnostic to the chosen machine learning model, is presented in both continuous- and discrete-time settings, and is compatible both with model errors that exhibit substantial memory and errors that are memoryless. First, we study memoryless linear (w.r.t. parametric-dependence) model error from a learning theory perspective, defining excess risk and generalization error. For ergodic continuous-time systems, we prove that both excess risk and generalization error are bounded above by terms that diminish with the square-root of T T , the time-interval over which training data is specified. Secondly, we study scenarios that benefit from modeling with memory, proving universal approximation theorems for two classes of continuous-time recurrent neural networks (RNNs): both can learn memory-dependent model error, assuming that it is governed by a finite-dimensional hidden variable and that, together, the observed and hidden variables form a continuous-time Markovian system. In addition, we connect one class of RNNs to reservoir computing, thereby relating learning of memory-dependent error to recent work on supervised learning between Banach spaces using random features. Numerical results are presented (Lorenz ’63, Lorenz ’96 Multiscale systems) to compare purely data-driven and hybrid approaches, finding hybrid methods less datahungry and more parametrically efficient. We also find that, while a continuous-time framing allows for robustness to irregular sampling and desirable domain- interpretability, a discrete-time framing can provide similar or better predictive performance, especially when data are undersampled and the vector field defining the true dynamics cannot be identified. Finally, we demonstrate numerically how data assimilation can be leveraged to learn hidden dynamics from noisy, partially-observed data, and illustrate challenges in representing memory by this approach, and in the training of such models.more » « less
-
Abstract The modeling of weather and climate has been a success story. The skill of forecasts continues to improve and model biases continue to decrease. Combining the output of multiple models has further improved forecast skill and reduced biases. But are we exploiting the full capacity of state-of-the-art models in making forecasts and projections? Supermodeling is a recent step forward in the multimodel ensemble approach. Instead of combining model output after the simulations are completed, in a supermodel individual models exchange state information as they run, influencing each other’s behavior. By learning the optimal parameters that determine how models influence each other based on past observations, model errors are reduced at an early stage before they propagate into larger scales and affect other regions and variables. The models synchronize on a common solution that through learning remains closer to the observed evolution. Effectively a new dynamical system has been created, a supermodel, that optimally combines the strengths of the constituent models. The supermodel approach has the potential to rapidly improve current state-of-the-art weather forecasts and climate predictions. In this paper we introduce supermodeling, demonstrate its potential in examples of various complexity, and discuss learning strategies. We conclude with a discussion of remaining challenges for a successful application of supermodeling in the context of state-of-the-art models. The supermodeling approach is not limited to the modeling of weather and climate, but can be applied to improve the prediction capabilities of any complex system, for which a set of different models exists.more » « less
-
Abstract Weather forecasts made with imperfect models contain state‐dependent errors. Data assimilation (DA) partially corrects these errors with new information from observations. As such, the corrections, or “analysis increments,” produced by the DA process embed information about model errors. An attempt is made here to extract that information to improve numerical weather prediction. Neural networks (NNs) are trained to predict corrections to the systematic error in the National Oceanic and Atmospheric Administration's FV3‐GFS model based on a large set of analysis increments. A simple NN focusing on an atmospheric column significantly improves the estimated model error correction relative to a linear baseline. Leveraging large‐scale horizontal flow conditions using a convolutional NN, when compared to the simple column‐oriented NN, does not improve skill in correcting model error. The sensitivity of model error correction to forecast inputs is highly localized by vertical level and by meteorological variable, and the error characteristics vary across vertical levels. Once trained, the NNs are used to apply an online correction to the forecast during model integration. Improvements are evaluated both within a cycled DA system and across a collection of 10‐day forecasts. It is found that applying state‐dependent NN‐predicted corrections to the model forecast improves the overall quality of DA and improves the 10‐day forecast skill at all lead times.more » « less
-
Models of many engineering and natural systems are imperfect. The discrepancy between the mathematical representations of a true physical system and its imperfect model is called the model error. These model errors can lead to substantial differences between the numerical solutions of the model and the state of the system, particularly in those involving nonlinear, multi-scale phenomena. Thus, there is increasing interest in reducing model errors, particularly by leveraging the rapidly growing observational data to understand their physics and sources. Here, we introduce a framework named MEDIDA: Model Error Discovery with Interpretability and Data Assimilation. MEDIDA only requires a working numerical solver of the model and a small number of noise-free or noisy sporadic observations of the system. In MEDIDA, first, the model error is estimated from differences between the observed states and model-predicted states (the latter are obtained from a number of one-time-step numerical integrations from the previous observed states). If observations are noisy, a data assimilation technique, such as the ensemble Kalman filter, is employed to provide the analysis state of the system, which is then used to estimate the model error. Finally, an equation-discovery technique, here the relevance vector machine, a sparsity-promoting Bayesian method, is used to identify an interpretable, parsimonious, and closed-form representation of the model error. Using the chaotic Kuramoto–Sivashinsky system as the test case, we demonstrate the excellent performance of MEDIDA in discovering different types of structural/parametric model errors, representing different types of missing physics, using noise-free and noisy observations.more » « less
An official website of the United States government
