skip to main content


Title: Deep learning for bias correction of MJO prediction
Abstract Producing accurate weather prediction beyond two weeks is an urgent challenge due to its ever-increasing socioeconomic value. The Madden-Julian Oscillation (MJO), a planetary-scale tropical convective system, serves as a primary source of global subseasonal (i.e., targeting three to four weeks) predictability. During the past decades, operational forecasting systems have improved substantially, while the MJO prediction skill has not yet reached its potential predictability, partly due to the systematic errors caused by imperfect numerical models. Here, to improve the MJO prediction skill, we blend the state-of-the-art dynamical forecasts and observations with a Deep Learning bias correction method. With Deep Learning bias correction, multi-model forecast errors in MJO amplitude and phase averaged over four weeks are significantly reduced by about 90% and 77%, respectively. Most models show the greatest improvement for MJO events starting from the Indian Ocean and crossing the Maritime Continent.  more » « less
Award ID(s):
1652289
PAR ID:
10328756
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Madden‐Julian oscillation (MJO) is the leading source of global subseasonal predictability; however, many dynamical forecasting systems struggle to predict MJO propagation through the Maritime Continent. Better understanding the biases in simulated physical processes associated with MJO propagation is the key to improve MJO prediction. In this study, MJO prediction skill, propagation processes, and mean state biases are evaluated in reforecasts from models participating in the Subseasonal Experiment (SubX) and Subseasonal to Seasonal (S2S) prediction projects. SubX and S2S reforecasts show MJO prediction skill out to 4.5 weeks based on the Real‐time Multivariate MJO index consistent with previous studies. However, a closer examination of these models' representation of MJO propagation through the Maritime Continent reveals that they fail to predict the MJO convection, associated circulations, and moisture advection processes beyond 10 days with most of models underestimating MJO amplitude. The biases in the MJO propagation can be partly associated with the following mean biases across the Indo‐Pacific: a drier low troposphere, excess surface precipitation, more frequent occurrence of light precipitation rates, and a transition to stronger precipitation rates at lower humidity than in observations. This indicates that deep convection occurs too frequently in models and is not sufficiently inhibited when tropospheric moisture is low, which is likely due to the representation of entrainment.

     
    more » « less
  2. Abstract

    Studies have indicated exaggerated Maritime Continent (MC) barrier effect in simulations of the Madden–Julian oscillation (MJO), a dominant source of subseasonal predictability in the tropics. This issue has plagued the modeling and operational forecasting communities for decades, while the sensitivity of MC barrier on MJO predictability has not been addressed quantitatively. In this study, perfect-model ensemble forecasts are conducted with an aquaplanet configuration of the Community Earth System Model version 2 (CESM2) in which both basic state and tropical modes of variability are reasonably simulated with a warm pool–like SST distribution. When water-covered terrain mimicking MC landmasses is added to the warm pool–like SST framework, the eastward propagation of the MJO is disturbed by the prescribed MC aqua-mountain. The MJO predictability estimate with the perfect-model experiment is about 6 weeks but reduces to about 4 weeks when the MJO is impeded by the MC aqua-mountain. Given that the recent operational forecasts show an average of 3–4 weeks of MJO prediction skill, we can conclude that improving the MJO propagation crossing the MC could improve the MJO skill to 5–6 weeks, close to the potential predictability found in this study (6 weeks). Therefore, more effort toward understanding and improving the MJO propagation is needed to enhance the MJO and MJO-related forecasts to improve the subseasonal-to-seasonal prediction.

     
    more » « less
  3. Abstract

    Subseasonal forecasting—predicting temperature and precipitation 2 to 6 weeks ahead—is critical for effective water allocation, wildfire management, and drought and flood mitigation. Recent international research efforts have advanced the subseasonal capabilities of operational dynamical models, yet temperature and precipitation prediction skills remain poor, partly due to stubborn errors in representing atmospheric dynamics and physics inside dynamical models. Here, to counter these errors, we introduce anadaptive bias correction(ABC) method that combines state-of-the-art dynamical forecasts with observations using machine learning. We show that, when applied to the leading subseasonal model from the European Centre for Medium-Range Weather Forecasts (ECMWF), ABC improves temperature forecasting skill by 60–90% (over baseline skills of 0.18–0.25) and precipitation forecasting skill by 40–69% (over baseline skills of 0.11–0.15) in the contiguous U.S. We couple these performance improvements with a practical workflow to explain ABC skill gains and identify higher-skill windows of opportunity based on specific climate conditions.

     
    more » « less
  4. Abstract A subseasonal-to-seasonal (S2S) prediction system was recently developed using the GFDL Seamless System for Prediction and Earth System Research (SPEAR) global coupled model. Based on 20-yr hindcast results (2000–19), the boreal wintertime (November–April) Madden–Julian oscillation (MJO) prediction skill is revealed to reach 30 days measured before the anomaly correlation coefficient of the real-time multivariate (RMM) index drops to 0.5. However, when the MJO is partitioned into four distinct propagation patterns, the prediction range extends to 38, 31, and 31 days for the fast-propagating, slow-propagating, and jumping MJO patterns, respectively, but falls to 23 days for the standing MJO. A further improvement of MJO prediction requires attention to the standing MJO given its large gap with its potential predictability (38 days). The slow-propagating MJO detours southward when traversing the Maritime Continent (MC), and confronts the MC prediction barrier in the model, while the fast-propagating MJO moves across the central MC without this prediction barrier. The MJO diversity is modulated by stratospheric quasi-biennial oscillation (QBO): the standing (slow-propagating) MJO coincides with significant westerly (easterly) phases of QBO, partially explaining the contrasting MJO prediction skill between these two QBO phases. The SPEAR model shows its capability, beyond the propagation, in predicting their initiation for different types of MJO along with discrete precursory convection anomalies. The SPEAR model skillfully predicts the observed distinct teleconnections over the North Pacific and North America related to the standing, jumping, and fast-propagating MJO, but not the slow-propagating MJO. These findings highlight the complexities and challenges of incorporating MJO prediction into the operational prediction of meteorological variables. 
    more » « less
  5. Abstract

    Few studies have utilized machine learning techniques to predict or understand the Madden‐Julian oscillation (MJO), a key source of subseasonal variability and predictability. Here, we present a simple framework for real‐time MJO prediction using shallow artificial neural networks (ANNs). We construct two ANN architectures, one deterministic and one probabilistic, that predict a real‐time MJO index using maps of tropical variables. These ANNs make skillful MJO predictions out to ∼18 days in October‐March and ∼11 days in April‐September, outperforming conventional linear models and efficiently capturing aspects of MJO predictability found in more complex, dynamical models. The flexibility and explainability of simple ANN frameworks are highlighted through varying model input and applying ANN explainability techniques that reveal sources and regions important for ANN prediction skill. The accessibility, performance, and efficiency of this simple machine learning framework is more broadly applicable to predict and understand other Earth system phenomena.

     
    more » « less