We study regularized deep neural networks (DNNs) and introduce a convex analytic framework to characterize the structure of the hidden layers. We show that a set of optimal hidden layer weights for a norm regularized DNN training problem can be explicitly found as the extreme points of a convex set. For the special case of deep linear networks, we prove that each optimal weight matrix aligns with the previous layers via duality. More importantly, we apply the same characterization to deep ReLU networks with whitened data and prove the same weight alignment holds. As a corollary, we also prove that norm regularized deep ReLU networks yield spline interpolation for one-dimensional datasets which was previously known only for two-layer networks. Furthermore, we provide closed-form solutions for the optimal layer weights when data is rank-one or whitened. The same analysis also applies to architectures with batch normalization even for arbitrary data. Therefore, we obtain a complete explanation for a recent empirical observation termed Neural Collapse where class means collapse to the vertices of a simplex equiangular tight frame.
more »
« less
This content will become publicly available on February 1, 2026
Deep Neural Networks and Universal Approximators II
There are many studies of approximations using deep neural networks. In this paper, the authors provide yet another proof that deep neural networks are universal approximators. In their earlier work, the authors showed that an arbitrary binary target function can be effectively rewritten in terms of a set of strings, or a set of subsets, and that a single hidden neuron can identify and only identify a single string or a single subset. Therefore, an arbitrary binary target function can be effectively rewritten in the form of a neural network with one hidden layer. In this study, the authors imposed locality on the deep neural network, and will show here that an arbitrary binary target function can be effectively rewritten in the form of a locally connected deep neural network that can have many hidden layers. Although it will increase the neural network size, as a neural network is localized, it will generally increase the speed of training for large networks
more »
« less
- Award ID(s):
- 2348805
- PAR ID:
- 10575312
- Publisher / Repository:
- Bowling Green State University-Firelands
- Date Published:
- Journal Name:
- The international journal of modern engineering
- Volume:
- 25
- Issue:
- 1
- ISSN:
- 1930-6628
- Page Range / eLocation ID:
- 23-34
- Subject(s) / Keyword(s):
- AI Universal Approximator Completeness Deep Neural Network Machine Learning Supervised Learning Unsupervised Learning Locally Connected.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We develop a convex analytic framework for ReLU neural networks which elucidates the inner workings of hidden neurons and their function space characteristics. We show that neural networks with rectified linear units act as convex regularizers, where simple solutions are encouraged via extreme points of a certain convex set. For one dimensional regression and classification, as well as rank-one data matrices, we prove that finite two-layer ReLU networks with norm regularization yield linear spline interpolation. We characterize the classification decision regions in terms of a closed form kernel matrix and minimum L1 norm solutions. This is in contrast to Neural Tangent Kernel which is unable to explain neural network predictions with finitely many neurons. Our convex geometric description also provides intuitive explanations of hidden neurons as auto encoders. In higher dimensions, we show that the training problem for two-layer networks can be cast as a finite dimensional convex optimization problem with infinitely many constraints. We then provide a family of convex relaxations to approximate the solution, and a cutting-plane algorithm to improve the relaxations. We derive conditions for the exactness of the relaxations and provide simple closed form formulas for the optimal neural network weights in certain cases. We also establish a connection to ℓ0-ℓ1 equivalence for neural networks analogous to the minimal cardinality solutions in compressed sensing. Extensive experimental results show that the proposed approach yields interpretable and accurate models.more » « less
-
While neural networks are used for classification tasks across domains, a long-standing open problem in machine learning is determining whether neural networks trained using standard procedures are consistent for classification, i.e., whether such models minimize the probability of misclassification for arbitrary data distributions. In this work, we identify and construct an explicit set of neural network classifiers that are consistent. Since effective neural networks in practice are typically both wide and deep, we analyze infinitely wide networks that are also infinitely deep. In particular, using the recent connection between infinitely wide neural networks and neural tangent kernels, we provide explicit activation functions that can be used to construct networks that achieve consistency. Interestingly, these activation functions are simple and easy to implement, yet differ from commonly used activations such as ReLU or sigmoid. More generally, we create a taxonomy of infinitely wide and deep networks and show that these models implement one of three well-known classifiers depending on the activation function used: 1) 1-nearest neighbor (model predictions are given by the label of the nearest training example); 2) majority vote (model predictions are given by the label of the class with the greatest representation in the training set); or 3) singular kernel classifiers (a set of classifiers containing those that achieve consistency). Our results highlight the benefit of using deep networks for classification tasks, in contrast to regression tasks, where excessive depth is harmful.more » « less
-
Deep neural networks have revolutionized many real world applications, due to their flexibility in data fitting and accurate predictions for unseen data. A line of research reveals that neural networks can approximate certain classes of functions with an arbitrary accuracy, while the size of the network scales exponentially with respect to the data dimension. Empirical results, however, suggest that networks of moderate size already yield appealing performance. To explain such a gap, a common belief is that many data sets exhibit low dimensional structures, and can be modeled as samples near a low dimensional manifold. In this paper, we prove that neural networks can efficiently approximate functions supported on low dimensional manifolds. The network size scales exponentially in the approximation error, with an exponent depending on the intrinsic dimension of the data and the smoothness of the function. Our result shows that exploiting low dimensional data structures can greatly enhance the efficiency in function approximation by neural networks. We also implement a sub-network that assigns input data to their corresponding local neighborhoods, which may be of independent interest.more » « less
-
Deep neural networks have revolutionized many real world applications, due to their flexibility in data fitting and accurate predictions for unseen data. A line of research reveals that neural networks can approximate certain classes of functions with an arbitrary accuracy, while the size of the network scales exponentially with respect to the data dimension. Empirical results, however, suggest that networks of moderate size already yield appealing performance. To explain such a gap, a common belief is that many data sets exhibit low dimensional structures, and can be modeled as samples near a low dimensional manifold. In this paper, we prove that neural networks can efficiently approximate functions supported on low dimensional manifolds. The network size scales exponentially in the approximation error, with an exponent depending on the intrinsic dimension of the data and the smoothness of the function. Our result shows that exploiting low dimensional data structures can greatly enhance the efficiency in function approximation by neural networks. We also implement a sub-network that assigns input data to their corresponding local neighborhoods, which may be of independent interest.more » « less
An official website of the United States government
