skip to main content

Title: Convex Geometry and Duality of Over-parameterized Neural Networks
We develop a convex analytic framework for ReLU neural networks which elucidates the inner workings of hidden neurons and their function space characteristics. We show that neural networks with rectified linear units act as convex regularizers, where simple solutions are encouraged via extreme points of a certain convex set. For one dimensional regression and classification, as well as rank-one data matrices, we prove that finite two-layer ReLU networks with norm regularization yield linear spline interpolation. We characterize the classification decision regions in terms of a closed form kernel matrix and minimum L1 norm solutions. This is in contrast to Neural Tangent Kernel which is unable to explain neural network predictions with finitely many neurons. Our convex geometric description also provides intuitive explanations of hidden neurons as auto encoders. In higher dimensions, we show that the training problem for two-layer networks can be cast as a finite dimensional convex optimization problem with infinitely many constraints. We then provide a family of convex relaxations to approximate the solution, and a cutting-plane algorithm to improve the relaxations. We derive conditions for the exactness of the relaxations and provide simple closed form formulas for the optimal neural network weights in certain cases. We also establish more » a connection to ℓ0-ℓ1 equivalence for neural networks analogous to the minimal cardinality solutions in compressed sensing. Extensive experimental results show that the proposed approach yields interpretable and accurate models. « less
Authors:
;
Award ID(s):
1838179
Publication Date:
NSF-PAR ID:
10206904
Journal Name:
International Conference on Artificial Intelligence and Statistics (AISTATS 2020)
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop a convex analytic approach to analyze finite width two-layer ReLU networks. We first prove that an optimal solution to the regularized training problem can be characterized as extreme points of a convex set, where simple solutions are encouraged via its convex geometrical properties. We then leverage this characterization to show that an optimal set of parameters yield linear spline interpolation for regression problems involving one dimensional or rank-one data. We also characterize the classification decision regions in terms of a kernel matrix and minimum `1-norm solutions. This is in contrast to Neural Tangent Kernel which is unable tomore »explain predictions of finite width networks. Our convex geometric characterization also provides intuitive explanations of hidden neurons as auto-encoders. In higher dimensions, we show that the training problem can be cast as a finite dimensional convex problem with infinitely many constraints. Then, we apply certain convex relaxations and introduce a cutting-plane algorithm to globally optimize the network. We further analyze the exactness of the relaxations to provide conditions for the convergence to a global optimum. Our analysis also shows that optimal network parameters can be also characterized as interpretable closed-form formulas in some practically relevant special cases.« less
  2. We study regularized deep neural networks (DNNs) and introduce a convex analytic framework to characterize the structure of the hidden layers. We show that a set of optimal hidden layer weights for a norm regularized DNN training problem can be explicitly found as the extreme points of a convex set. For the special case of deep linear networks, we prove that each optimal weight matrix aligns with the previous layers via duality. More importantly, we apply the same characterization to deep ReLU networks with whitened data and prove the same weight alignment holds. As a corollary, we also prove thatmore »norm regularized deep ReLU networks yield spline interpolation for one-dimensional datasets which was previously known only for two-layer networks. Furthermore, we provide closed-form solutions for the optimal layer weights when data is rank-one or whitened. The same analysis also applies to architectures with batch normalization even for arbitrary data. Therefore, we obtain a complete explanation for a recent empirical observation termed Neural Collapse where class means collapse to the vertices of a simplex equiangular tight frame.« less
  3. Silva, Alexandra ; Leino, K. Rustan (Ed.)
    Neural Networks (NNs) have increasingly apparent safety implications commensurate with their proliferation in real-world applications: both unanticipated as well as adversarial misclassifications can result in fatal outcomes. As a consequence, techniques of formal verification have been recognized as crucial to the design and deployment of safe NNs. In this paper, we introduce a new approach to formally verify the most commonly considered safety specifications for ReLU NNs -- i.e. polytopic specifications on the input and output of the network. Like some other approaches, ours uses a relaxed convex program to mitigate the combinatorial complexity of the problem. However, unique inmore »our approach is the way we use a convex solver not only as a linear feasibility checker, but also as a means of penalizing the amount of relaxation allowed in solutions. In particular, we encode each ReLU by means of the usual linear constraints, and combine this with a convex objective function that penalizes the discrepancy between the output of each neuron and its relaxation. This convex function is further structured to force the largest relaxations to appear closest to the input layer; this provides the further benefit that the most ``problematic'' neurons are conditioned as early as possible, when conditioning layer by layer. This paradigm can be leveraged to create a verification algorithm that is not only faster in general than competing approaches, but is also able to verify considerably more safety properties; we evaluated PEREGRiNN on a standard MNIST robustness verification suite to substantiate these claims.« less
  4. We propose a novel family of connectionist models based on kernel machines and consider the problem of learning layer by layer a compositional hypothesis class (i.e., a feedforward, multilayer architecture) in a supervised setting. In terms of the models, we present a principled method to “kernelize” (partly or completely) any neural network (NN). With this method, we obtain a counterpart of any given NN that is powered by kernel machines instead of neurons. In terms of learning, when learning a feedforward deep architecture in a supervised setting, one needs to train all the components simultaneously using backpropagation (BP) since theremore »are no explicit targets for the hidden layers (Rumelhart, Hinton, & Williams, 1986). We consider without loss of generality the two-layer case and present a general framework that explicitly characterizes a target for the hidden layer that is optimal for minimizing the objective function of the network. This characterization then makes possible a purely greedy training scheme that learns one layer at a time, starting from the input layer. We provide instantiations of the abstract framework under certain architectures and objective functions. Based on these instantiations, we present a layer-wise training algorithm for an l-layer feedforward network for classification, where l≥2 can be arbitrary. This algorithm can be given an intuitive geometric interpretation that makes the learning dynamics transparent. Empirical results are provided to complement our theory. We show that the kernelized networks, trained layer-wise, compare favorably with classical kernel machines as well as other connectionist models trained by BP. We also visualize the inner workings of the greedy kernelized models to validate our claim on the transparency of the layer-wise algorithm.« less
  5. We describe the convex semi-infinite dual of the two-layer vector-output ReLU neural network training problem. This semi-infinite dual admits a finite dimensional representation, but its support is over a convex set which is difficult to characterize. In particular, we demonstrate that the non-convex neural network training problem is equivalent to a finite-dimensional convex copositive program. Our work is the first to identify this strong connection between the global optima of neural networks and those of copositive programs. We thus demonstrate how neural networks implicitly attempt to solve copositive programs via semi-nonnegative matrix factorization, and draw key insights from this formulation.more »We describe the first algorithms for provably finding the global minimum of the vector output neural network training problem, which are polynomial in the number of samples for a fixed data rank, yet exponential in the dimension. However, in the case of convolutional architectures, the computational complexity is exponential in only the filter size and polynomial in all other parameters. We describe the circumstances in which we can find the global optimum of this neural network training problem exactly with soft-thresholded SVD, and provide a copositive relaxation which is guaranteed to be exact for certain classes of problems, and which corresponds with the solution of Stochastic Gradient Descent in practice.« less