Here, we present results of a computational study of electronic, magnetic, and structural properties of FeVTaAl and FeCrZrAl, quaternary Heusler alloys that have been recently reported to exhibit spin-gapless semiconducting behavior. Our calculations indicate that these materials may crystallize in regular Heusler cubic structure, which has a significantly lower energy than the inverted Heusler cubic phase. Both FeVTaAl and FeCrZrAl exhibit ferromagnetic alignment, with an integer magnetic moment per unit cell at equilibrium lattice constant. Band structure analysis reveals that while both FeVTaAl and FeCrZrAl indeed exhibit nearly spin-gapless semiconducting electronic structure at their optimal lattice parameters, FeVTaAl is a 100% spin-polarized semimetal, while FeCrZrAl is a magnetic semiconductor. Our calculations indicate that expansion of the unit cell volume retains 100% spin-polarization of both compounds. In particular, both FeVTaAl and FeCrZrAl are 100% spin-polarized magnetic semiconductors at the largest considered lattice constant. At the same time, at smaller lattice parameters, both compounds exhibit a more complex electronic structure, somewhat resembling half-metallic properties. Thus, both of these alloys may be potentially useful for practical applications in spin-based electronics, but their electronic structure is very sensitive to the external pressure. We hope that these results will stimulate experimental efforts to synthesize these materials.
more »
« less
Electronic, magnetic, and structural properties of V2CoAl: Experimental and computational study
Here, we present results of combined experimental and computations study of V2CoAl, a Heusler alloy that exhibits nearly perfect spin-polarization. Our calculations indicate that this material maintains a high degree of spin-polarization (over 90%) in the wide range of lattice parameters, except at the largest considered unit cell volume. The magnetic alignment of V2CoAl is ferrimagnetic, due to the antialignment of the magnetic moments of vanadium atoms in their two sublattices. The calculated total magnetic moment per formula unit is nearly integer at the optimal lattice parameter and at the smaller volumes of the unit cell, but it deviated from the integer values as the unit cell expands. This is consistent with the calculated variation in the degree of spin polarization with lattice constant. The expected ferrimagnetic behavior has been observed in the arc-melted V2CoAl sample, with a Curie temperature of about 80 K. However, the saturation magnetization is significantly smaller than the theoretical prediction of ∼2 μB/f.u., most likely due to the observed B2-type atomic disorder. The samples exhibit metallic electron transport across the measurement range of 2 K to 300 K.
more »
« less
- PAR ID:
- 10575449
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 15
- Issue:
- 3
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The emergence of novel magnetic states becomes more likely when the inversion symmetry of the crystal field, relative to the center between two spins, is broken. We propose that placing magnetic spins in inequivalent sites in a polar lattice can promote a realization of nontrivial magnetic states and associated magnetic properties. To test our hypothesis, we study Fe2(SeO3)(H2O)3 as a model system that displays two distinct Fe(1) and Fe(2) magnetic sites in a polar structure (R3c space group). At low fields μ0H≤ 0.06 T, the material undergoes an antiferromagnetic ordering with TN1 = 77 K and a second transition at TN2≈ 4 K. At μ0H≥ 0.06 T and 74 K ≤T≤ 76 K, a positive entropy change of ∼0.12 mJ mol−1 K−1 can be associated with a metamagnetic transition to possibly nontrivial spin states. At zero field, Fe(1) is nearly fully ordered at T≈ 25 K, while Fe(2) features magnetic frustration down to T = 4 K. The magnetic ground state, a result corroborated by single-crystal neutron diffraction and 57Fe Mössbauer spectroscopy, is a noncollinear antiparallel arrangement of ferrimagnetic Fe(1)–Fe(2) dimers along the c-axis. The results demonstrate that placing distinct magnetic sites in a polar crystal lattice can enable a new pathway to modifying spin, orbital, and lattice degrees of freedom for unconventional magnetism.more » « less
-
Abstract The inverse spinel ferrimagnetic NiCo2O4presents a unique model system for studying the competing effects of crystalline fields, magnetic exchange, and various types of chemical and lattice disorder on the electronic and magnetic states. Here, magnetotransport anomalies in high‐quality epitaxial NiCo2O4thin films resulting from the complex energy landscape are reported. A strong out‐of‐plane magnetic anisotropy, linear magnetoresistance, and robust anomalous Hall effect above 300 K are observed in 5–30 unit cell NiCo2O4films. The anomalous Hall resistance exhibits a nonmonotonic temperature dependence that peaks around room temperature, and reverses its sign at low temperature in films thinner than 20 unit cells. The scaling relation between the anomalous Hall conductivity and longitudinal conductivity reveals the intricate interplay between the spin‐dependent impurity scattering, band intrinsic Berry phase effect, and electron correlation. This study provides important insights into the functional design of NiCo2O4for developing spinel‐based spintronic applications.more » « less
-
Spin-gapless semiconductors (SGS) represent a new type of compounds with potential applications in novel spintronic devices. Here, we performed a comprehensive computational and theoretical study of FeCrTiAl, a quaternary Heusler compound that was recently predicted to exhibit nearly SGS properties. Our calculations indicate that this material undergoes several band structure transitions from essentially semimetallic phase at smaller lattice constants to nearly type-II SGS at the ground state, then to nearly type-III SGS and further to nearly type-I SGS, as the lattice parameter is increased. Another interesting feature of FeCrTiAl is that its spin polarization changes sign from negative to positive as the volume of the cell increases. At the largest considered lattice parameters, this compound exhibits nearly 100% spin polarization. The mechanical expansion discussed in this text may be achieved, in principle, either by applying an epitaxial strain in thin-film geometry, or by chemical substitution, for example with non-magnetic element of larger atomic radius. We hope that the presented results may provide guidance for further research on mechanical strain induced manipulation of electronic and magnetic properties of spin-gapless semiconductors.more » « less
-
The inverse spinel ferrimagnetic NiCo2O4possesses high magnetic Curie temperature TC, high spin polarization, and strain-tunable magnetic anisotropy. Understanding the thickness scaling limit of these intriguing magnetic properties in NiCo2O4thin films is critical for their implementation in nanoscale spintronic applications. In this work, we report the unconventional magnetotransport properties of epitaxial (001) NiCo2O4films on MgAl2O4substrates in the ultrathin limit. Anomalous Hall effect measurements reveal strong perpendicular magnetic anisotropy for films down to 1.5 unit cell (1.2 nm), while TCfor 3 unit cell and thicker films remains above 300 K. The sign change in the anomalous Hall conductivity [Formula: see text] and its scaling relation with the longitudinal conductivity ([Formula: see text]) can be attributed to the competing effects between impurity scattering and band intrinsic Berry curvature, with the latter vanishing upon the thickness driven metal–insulator transition. Our study reveals the critical role of film thickness in tuning the relative strength of charge correlation, Berry phase effect, spin–orbit interaction, and impurity scattering, providing important material information for designing scalable epitaxial magnetic tunnel junctions and sensing devices using NiCo2O4.more » « less
An official website of the United States government
