Spin-gapless semiconductor (SGS) is a new class of material that has been studied recently for potential applications in spintronics. This material behaves as an insulator for one spin channel, and as a gapless semiconductor for the opposite spin. In this work, we present results of a computational study of two quaternary Heusler alloys, MnCrNbAl and MnCrTaAl that have been recently reported to exhibit spin-gapless semiconducting electronic structure. In particular, using density functional calculations we analyze the effect of external pressure on electronic and magnetic properties of these compounds. It is shown that while these two alloys exhibit nearly SGS behavior at optimal lattice constants and at negative pressure (expansion), they are half-metals at equilibrium, and magnetic semiconductors at larger lattice constant. At the same time, reduction of the unit cell volume has a detrimental effect on electronic properties of these materials, by modifying the exchange splitting of their electronic structure and ultimately destroying their half-metallic/semiconducting behavior. Thus, our results indicate that both MnCrNbAl and MnCrTaAl may be attractive for practical device applications in spin-based electronics, but a potential compression of the unit cell volume (e.g. in thin-film applications) should be avoided. 
                        more » 
                        « less   
                    
                            
                            Electronic and magnetic properties of nearly spin-gapless semiconducting FeVTaAl and FeCrZrAl
                        
                    
    
            Here, we present results of a computational study of electronic, magnetic, and structural properties of FeVTaAl and FeCrZrAl, quaternary Heusler alloys that have been recently reported to exhibit spin-gapless semiconducting behavior. Our calculations indicate that these materials may crystallize in regular Heusler cubic structure, which has a significantly lower energy than the inverted Heusler cubic phase. Both FeVTaAl and FeCrZrAl exhibit ferromagnetic alignment, with an integer magnetic moment per unit cell at equilibrium lattice constant. Band structure analysis reveals that while both FeVTaAl and FeCrZrAl indeed exhibit nearly spin-gapless semiconducting electronic structure at their optimal lattice parameters, FeVTaAl is a 100% spin-polarized semimetal, while FeCrZrAl is a magnetic semiconductor. Our calculations indicate that expansion of the unit cell volume retains 100% spin-polarization of both compounds. In particular, both FeVTaAl and FeCrZrAl are 100% spin-polarized magnetic semiconductors at the largest considered lattice constant. At the same time, at smaller lattice parameters, both compounds exhibit a more complex electronic structure, somewhat resembling half-metallic properties. Thus, both of these alloys may be potentially useful for practical applications in spin-based electronics, but their electronic structure is very sensitive to the external pressure. We hope that these results will stimulate experimental efforts to synthesize these materials. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10578016
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 15
- Issue:
- 3
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Spin-gapless semiconductors (SGS) represent a new type of compounds with potential applications in novel spintronic devices. Here, we performed a comprehensive computational and theoretical study of FeCrTiAl, a quaternary Heusler compound that was recently predicted to exhibit nearly SGS properties. Our calculations indicate that this material undergoes several band structure transitions from essentially semimetallic phase at smaller lattice constants to nearly type-II SGS at the ground state, then to nearly type-III SGS and further to nearly type-I SGS, as the lattice parameter is increased. Another interesting feature of FeCrTiAl is that its spin polarization changes sign from negative to positive as the volume of the cell increases. At the largest considered lattice parameters, this compound exhibits nearly 100% spin polarization. The mechanical expansion discussed in this text may be achieved, in principle, either by applying an epitaxial strain in thin-film geometry, or by chemical substitution, for example with non-magnetic element of larger atomic radius. We hope that the presented results may provide guidance for further research on mechanical strain induced manipulation of electronic and magnetic properties of spin-gapless semiconductors.more » « less
- 
            Here, we present results of combined experimental and computations study of V2CoAl, a Heusler alloy that exhibits nearly perfect spin-polarization. Our calculations indicate that this material maintains a high degree of spin-polarization (over 90%) in the wide range of lattice parameters, except at the largest considered unit cell volume. The magnetic alignment of V2CoAl is ferrimagnetic, due to the antialignment of the magnetic moments of vanadium atoms in their two sublattices. The calculated total magnetic moment per formula unit is nearly integer at the optimal lattice parameter and at the smaller volumes of the unit cell, but it deviated from the integer values as the unit cell expands. This is consistent with the calculated variation in the degree of spin polarization with lattice constant. The expected ferrimagnetic behavior has been observed in the arc-melted V2CoAl sample, with a Curie temperature of about 80 K. However, the saturation magnetization is significantly smaller than the theoretical prediction of ∼2 μB/f.u., most likely due to the observed B2-type atomic disorder. The samples exhibit metallic electron transport across the measurement range of 2 K to 300 K.more » « less
- 
            In this study, we present results of a comprehensive computational and experimental study of CoFeVAl and CoFeV0.5Mn0.5Al Heusler alloys. It is shown that while CoFeVAl exhibits a fairly large degree of spin polarization, this material is not half-metallic due to the presence of the vanadium spin-down states at the Fermi level. However, replacing 50% of vanadium with manganese results in a nearly half-metallic transition, largely due to the shift of the Fermi level towards occupied states. Moreover, the half-metallicity of CoFeV0.5Mn0.5Al is rather robust in a wide range of considered mechanical strain and under experimentally observed B2-type atomic disorder, thus making this alloy potentially suitable for practical spintronic applications. Both considered alloys exhibit ferromagnetic alignment at larger lattice constants, aside from a relatively small magnetic moment of vanadium which is anti-aligned with the magnetic moments of Co, Fe and Mn. We have synthesized both CoFeVAl and CoFeV0.5Mn0.5Al alloys in cubic structure with some structural disorder using arc melting and annealing. The structural and magnetic properties of the synthesized CoFeV0.5Mn0.5Al alloy are in good agreement with the theoretical calculations but vary slightly from the parent compound.more » « less
- 
            Half-metallic Heusler compounds have been extensively studied in the recent years, both experimentally and theoretically, for potential applications in spin-based electronics. Here, we present the results of a combined theoretical and experimental study of the quaternary Heusler compound NiFeMnAl. Our calculations indicate that this material is half-metallic in the ground state and maintains its half-metallic electronic structure under a considerable range of external hydrostatic pressure and biaxial strain. NiFeMnAl crystallizes in the regular cubic Heusler structure, and exhibits ferromagnetic alignment. The practical feasibility of the proposed system is confirmed in the experimental section of this work. More specifically, a bulk ingot of NiFeMnAl was synthesized in A2 type disordered cubic structure using arc melting. It shows a high Curie temperature of about 468 K and a saturation magnetization of 2.3 μ_B⁄(f.u). The measured magnetization value is smaller than the one calculated for the ordered structure. This discrepancy is likely due to the A2 type atomic disorder, as demonstrated by our calculations. We hope that the presented results may be useful for researchers working on practical applications of spin-based electronics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
