skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 25, 2025

Title: Near-Optimal Distributionally Robust Reinforcement Learning with General Lp Norms
To address the challenges of sim-to-real gap and sample efficiency in reinforcement learning (RL), this work studies distributionally robust Markov decision processes (RMDPs) --- optimize the worst-case performance when the deployed environment is within an uncertainty set around some nominal MDP. Despite recent efforts, the sample complexity of RMDPs has remained largely undetermined. While the statistical implications of distributional robustness in RL have been explored in some specific cases, the generalizability of the existing findings remains unclear, especially in comparison to standard RL. Assuming access to a generative model that samples from the nominal MDP, we examine the sample complexity of RMDPs using a class of generalized norms as the 'distance' function for the uncertainty set, under two commonly adopted -rectangular and -rectangular conditions. Our results imply that RMDPs can be more sample-efficient to solve than standard MDPs using generalized norms in both - and -rectangular cases, potentially inspiring more empirical research. We provide a near-optimal upper bound and a matching minimax lower bound for the -rectangular scenarios. For -rectangular cases, we improve the state-of-the-art upper bound and also derive a lower bound using norm that verifies the tightness.  more » « less
Award ID(s):
2240110
PAR ID:
10575535
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
The Thirty-eighth Annual Conference on Neural Information Processing Systems
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Robust Markov Decision Process (RMDP) framework focuses on designing control policies that are robust against the parameter uncertainties due to the mis- matches between the simulator model and real-world settings. An RMDP problem is typically formulated as a max-min problem, where the objective is to find the policy that maximizes the value function for the worst possible model that lies in an uncertainty set around a nominal model. The standard robust dynamic programming approach requires the knowledge of the nominal model for computing the optimal robust policy. In this work, we propose a model-based reinforcement learning (RL) algorithm for learning an ε-optimal robust policy when the nominal model is unknown. We consider three different forms of uncertainty sets, characterized by the total variation distance, chi-square divergence, and KL divergence. For each of these uncertainty sets, we give a precise characterization of the sample complexity of our proposed algorithm. In addition to the sample complexity results, we also present a formal analytical argument on the benefit of using robust policies. Finally, we demonstrate the performance of our algorithm on two benchmark problems. 
    more » « less
  2. We study off-dynamics Reinforcement Learning (RL), where the policy is trained on a source domain and deployed to a distinct target domain. We aim to solve this problem via online distributionally robust Markov decision processes (DRMDPs), where the learning algorithm actively interacts with the source domain while seeking the optimal performance under the worst possible dynamics that is within an uncertainty set of the source domain's transition kernel. We provide the first study on online DRMDPs with function approximation for off-dynamics RL. We find that DRMDPs' dual formulation can induce nonlinearity, even when the nominal transition kernel is linear, leading to error propagation. By designing a $$d$$-rectangular uncertainty set using the total variation distance, we remove this additional nonlinearity and bypass the error propagation. We then introduce DR-LSVI-UCB, the first provably efficient online DRMDP algorithm for off-dynamics RL with function approximation, and establish a polynomial suboptimality bound that is independent of the state and action space sizes. Our work makes the first step towards a deeper understanding of the provable efficiency of online DRMDPs with linear function approximation. Finally, we substantiate the performance and robustness of DR-LSVI-UCB through different numerical experiments. 
    more » « less
  3. To overcome the sim-to-real gap in reinforcement learning (RL), learned policies must maintain robustness against environmental uncertainties. While robust RL has been widely studied in single-agent regimes, in multi-agent environments, the problem remains understudied-- despite the fact that the problems posed by environmental uncertainties are often exacerbated by strategic interactions. This work focuses on learning in distributionally robust Markov games (RMGs), a robust variant of standard Markov games, wherein each agent aims to learn a policy that maximizes its own worst-case performance when the deployed environment deviates within its own prescribed uncertainty set. This results in a set of robust equilibrium strategies for all agents that align with classic notions of game-theoretic equilibria. Assuming a non-adaptive sampling mechanism from a generative model, we propose a sample-efficient model-based algorithm (DRNVI) with finite-sample complexity guarantees for learning robust variants of various notions of game-theoretic equilibria. We also establish an information-theoretic lower bound for solving RMGs, which confirms the near-optimal sample complexity of DR-NVI with respect to problem-dependent factors such as the size of the state space, the target accuracy, and the horizon length. 
    more » « less
  4. We study the \emph{offline reinforcement learning} (offline RL) problem, where the goal is to learn a reward-maximizing policy in an unknown \emph{Markov Decision Process} (MDP) using the data coming from a policy $$\mu$$. In particular, we consider the sample complexity problems of offline RL for the finite horizon MDPs. Prior works derive the information-theoretical lower bounds based on different data-coverage assumptions and their upper bounds are expressed by the covering coefficients which lack the explicit characterization of system quantities. In this work, we analyze the \emph{Adaptive Pessimistic Value Iteration} (APVI) algorithm and derive the suboptimality upper bound that nearly matches $$ O\left(\sum_{h=1}^H\sum_{s_h,a_h}d^{\pi^\star}_h(s_h,a_h)\sqrt{\frac{\mathrm{Var}_{P_{s_h,a_h}}{(V^\star_{h+1}+r_h)}}{d^\mu_h(s_h,a_h)}}\sqrt{\frac{1}{n}}\right). $$ We also prove an information-theoretical lower bound to show this quantity is required under the weak assumption that $$d^\mu_h(s_h,a_h)>0$$ if $$d^{\pi^\star}_h(s_h,a_h)>0$$. Here $$\pi^\star$$ is a optimal policy, $$\mu$$ is the behavior policy and $$d(s_h,a_h)$$ is the marginal state-action probability. We call this adaptive bound the \emph{intrinsic offline reinforcement learning bound} since it directly implies all the existing optimal results: minimax rate under uniform data-coverage assumption, horizon-free setting, single policy concentrability, and the tight problem-dependent results. Later, we extend the result to the \emph{assumption-free} regime (where we make no assumption on $$ \mu$$) and obtain the assumption-free intrinsic bound. Due to its generic form, we believe the intrinsic bound could help illuminate what makes a specific problem hard and reveal the fundamental challenges in offline RL. 
    more » « less
  5. In constrained reinforcement learning (RL), a learning agent seeks to not only optimize the overall reward but also satisfy the additional safety, diversity, or budget constraints. Consequently, existing constrained RL solutions require several new algorithmic ingredients that are notably different from standard RL. On the other hand, reward-free RL is independently developed in the unconstrained literature, which learns the transition dynamics without using the reward information, and thus naturally capable of addressing RL with multiple objectives under the common dynamics. This paper bridges reward-free RL and constrained RL. Particularly, we propose a simple meta-algorithm such that given any reward-free RL oracle, the approachability and constrained RL problems can be directly solved with negligible overheads in sample complexity. Utilizing the existing reward-free RL solvers, our framework provides sharp sample complexity results for constrained RL in the tabular MDP setting, matching the best existing results up to a factor of horizon dependence; our framework directly extends to a setting of tabular two-player Markov games, and gives a new result for constrained RL with linear function approximation. 
    more » « less