Abstract Determining conditions for earthquake slip on faults is a key goal of fault mechanics highly relevant to seismic hazard. Previous studies have demonstrated that enhanced dynamic weakening (EDW) can lead to dynamic rupture of faults with much lower shear stress than required for rupture nucleation. We study the stress conditions before earthquake ruptures of different sizes that spontaneously evolve in numerical simulations of earthquake sequences on rate‐and‐state faults with EDW due to thermal pressurization of pore fluids. We find that average shear stress right before dynamic rupture (aka shear prestress) systematically varies with the rupture size. The smallest ruptures have prestress comparable to the local shear stress required for nucleation. Larger ruptures weaken the fault more, propagate over increasingly under‐stressed areas due to dynamic stress concentration, and result in progressively lower average prestress over the entire rupture. The effect is more significant in fault models with more efficient EDW. We find that, as a result, fault models with more efficient weakening produce fewer small events and result in systematically lower b‐values of the frequency‐magnitude event distributions. The findings (a) illustrate that large earthquakes can occur on faults that appear not to be critically stressed compared to stresses required for slip nucleation; (b) highlight the importance of finite‐fault modeling in relating the local friction behavior determined in the lab to the field scale; and (c) suggest that paucity of small events or seismic quiescence may be the observational indication of mature faults that operate under low shear stress due to EDW.
more »
« less
This content will become publicly available on August 21, 2025
Majority of Ruptures in Large Continental Strike-Slip Earthquakes Are Unilateral: Permissive Evidence for Hybrid Brittle-to-Dynamic Ruptures
Abstract Finite-element models of neotectonics require transform faults to rupture seismically even where preseismic shear stresses are low, presumably by dynamic-weakening mechanisms. A long-standing objection is that, if a rupture initiated at an asperity with high static friction stresses, which then transitioned to low dynamic-weakening stresses, local stress drop would be near total and on the order of 80 MPa, which is 4×–40× greater than observed. But the 5 Mw ≥ 7.8 transform earthquakes since 2000 initially ruptured on the branch faults of small net slip (Stein and Bird, 2024). If the slip initiates on a branch fault with different slip physics and no dynamic weakening, this solves the stress-drop problem. We propose that most large shallow earthquakes are hybrid ruptures, which begin on branch faults of small slip with high shear stresses, and then continue propagating on a connected dynamically weakened fault of large slip, even where shear stresses are low. One prediction of this model is that most large shallow ruptures should be unilateral. We test this prediction against the 100 largest (m ≥ 6.49) shallow continental strike-slip earthquakes 1977–2022, using information from the Global Centroid Moment Tensor and International Seismological Centre catalogs. The differences in time and location between the epicenter and the epicentroid define a horizontal “migration” velocity vector for the evolving centroid of each rupture. Early aftershock locations are summarized by a five-parameter elliptical model. Using the geometric relations between these (and mapped traces of active faults) and guided by a symmetrical decision table, we classified 55 ruptures as apparently unilateral, 30 as bilateral, and 15 as ambiguous. Our finding that a majority (55%–70%) of these ruptures are unilateral permits the interpretation that a majority of ruptures are hybrids, both in terms of geometry (branch fault to transform) and in terms of the physics of their fault slip.
more »
« less
- Award ID(s):
- 1853246
- PAR ID:
- 10575551
- Publisher / Repository:
- Seismological Society of America
- Date Published:
- Journal Name:
- Seismological Research Letters
- Volume:
- 95
- Issue:
- 6
- ISSN:
- 0895-0695
- Page Range / eLocation ID:
- 3306 to 3315
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Despite a lack of modern large earthquakes on shallowly dipping normal faults, Holocene M w > 7 low-angle normal fault (LANF; dip<30°) ruptures are preserved paleoseismically and inferred from historical earthquake and tsunami accounts. Even in well-recorded megathrust earthquakes, the effects of non-linear off-fault plasticity and dynamically reactivated splay faults on shallow deformation and surface displacements, and thus hazard, remain elusive. We develop data-constrained 3D dynamic rupture models of the active Mai’iu LANF that highlight how multiple dynamic shallow deformation mechanisms compete during large LANF earthquakes. We show that shallowly-dipping synthetic splays host more coseismic slip and limit shallow LANF rupture more than steeper antithetic splays. Inelastic hanging-wall yielding localizes into subplanar shear bands indicative of newly initiated splay faults, most prominently above LANFs with thick sedimentary basins. Dynamic splay faulting and sediment failure limit shallow LANF rupture, modulating coseismic subsidence patterns, near-shore slip velocities, and the seismic and tsunami hazards posed by LANF earthquakes.more » « less
-
Abstract The five Mw≥7.8 continental transform earthquakes since 2000 all nucleated on branch faults. This includes the 2001 Mw 7.8 Kokoxili, 2002 Mw 7.9 Denali, 2008 Mw 7.9 Wenchuan, 2016 Mw 7.8 Kaikōura, and 2023 Mw 7.8 Pazarcık events. A branch or splay is typically an immature fault that connects to the transform at an oblique angle and can have a different rake and dip than the transform. The branch faults ruptured for at least 25 km before they joined the transforms, which then ruptured an additional 250–450 km, in all but one case (Pazarcık) unilaterally. Branch fault nucleation is also likely for the 1939 M 7.8 Erzincan earthquake, possible for the 1906 Mw∼7.8 and 1857 Mw∼7.9 San Andreas earthquakes, but not for the 1990 Mw 7.7 Luzon, 2013 Mw 7.7 Balochistan, and 2023 Mw 7.7 Elbistan events. Here, we argue that because fault continuity and cataclastite within the fault damage zone develop through cumulative fault slip, mature transforms are pathways for dynamic rupture. Once a rupture enters the transform from the branch fault, flash shear heating causes pore fluid pressurization and sudden weakening in the cataclastite, resulting in very low dynamic friction. But the static friction on transforms is high, and so they are usually far from failure, which could be why they tend to be aseismic between, or at least for centuries after, great events. This could explain why the largest continental transform earthquakes either begin on a branch fault or nucleate along the transform at locations where the damage zone is absent or the fault continuity is disrupted by bends or echelons, as in the 1999 Mw 7.6 İzmit earthquake. Recognition of branch fault nucleation could be used to strengthen earthquake early warning in regions such as California, New Zealand, and Türkiye with transform faults.more » « less
-
Abstract Seismic moment and rupture length can be combined to infer stress drop, a key parameter for assessing earthquakes. In natural earthquakes, stress drops are largely depth‐independent, which is surprising given the expected dependence of frictional stress on normal stresses and hence overburden. We have developed a transparent experimental fault that allows direct observation of thousands of slip events, with ruptures that are fully contained within the fault. Surprisingly, the observed stress drops are largely independent of both the magnitude of normal stress and its heterogeneity, capturing the independence seen in nature. However, we observe larger, normal stress‐dependent stress drops when the fault area is reduced, which allows slip events to frequently reach the edge of the interface. We conclude that confined ruptures have normal stress independent stress drops, and thus the depth‐independent stress drops of tectonic earthquakes may be a consequence of their confined nature.more » « less
-
Abstract Many natural faults are believed to consist of velocity weakening (VW) patches surrounded by velocity strengthening (VS) sections. Numerical studies routinely employ this framework to study earthquake sequences including repeating earthquakes. In this laboratory study, we made a VW asperity, of lengthL, from a bare Poly(methyl methacrylate) PMMA frictional interface and coated the surrounding interface with Teflon to make VS fault sections. Behavior of this isolated asperity was studied as a function ofL(ranging from 100 to 400 mm) and the critical nucleation length, , which is inversely proportional to the applied normal stress (2–16 MPa). Consistent with recent numerical simulations, we observed aseismic slip for < 2, periodic slip for 2 < < 6, and non‐periodic slip for 10 < . Furthermore, we compared the experiments whereLwas contained by VS material to standard stick‐slip events whereLwas bounded by free surfaces (i.e.,L = the total sample length). The free surface case produced ∼10 times larger slip during stick‐slip events compared to the contained fault ruptures, even with identical . This disparity highlights how standard, complete‐rupture stick‐slip events differ from contained events expected in nature, due to both the free surface conditions and the heterogeneous normal stress along the fault near the free ends, as confirmed by Digital Image Correlation analysis. This study not only introduces the Teflon coating experimental technique for containing laboratory earthquake ruptures, but also highlights the utility of as a predictive parameter for earthquake behavior.more » « less