Code Large Language Models (Code LLMs) are being increasingly employed in real-life applications, so evaluating them is critical. While the conventional accuracy evaluates the performance of Code LLMs on a set of individual tasks, their self-consistency across different tasks is overlooked. Intuitively, a trustworthy model should be self-consistent when generating natural language specifications for its own code and generating code for its own specifications. Failure to preserve self-consistency reveals a lack of understanding of the shared semantics underlying natural language and programming language, and therefore undermines the trustworthiness of a model. In this paper, we first formally define the self-consistency of Code LLMs and then design a framework, IdentityChain, which effectively and efficiently evaluates the self-consistency and conventional accuracy of a model at the same time. We study eleven Code LLMs and show that they fail to preserve self-consistency, which is indeed a distinct aspect from conventional accuracy. Furthermore, we show that IdentityChain can be used as a model debugging tool to expose weaknesses of Code LLMs by demonstrating three major weaknesses that we identify in current models using IdentityChain. Our code is available at https://github.com/marcusm117/IdentityChain.
more »
« less
GRATH: Gradual Self-Truthifying for Large Language Models
Truthfulness is paramount for large language models (LLMs) as they are increasingly deployed in real-world applications. However, existing LLMs still struggle with generating truthful content, as evidenced by their modest performance on benchmarks like TruthfulQA. To address this issue, we propose GRAdual self-truTHifying (GRATH), a novel post-processing method to enhance truthfulness of LLMs. GRATH utilizes out-of-domain question prompts to generate pairwise truthfulness training data with each pair containing a question and its correct and incorrect answers, and then optimizes the model via direct preference optimization (DPO) to learn from the truthfulness difference between answer pairs. GRATH iteratively refines truthfulness data and updates the model, leading to a gradual improvement in model truthfulness in a self-supervised manner. Empirically, we evaluate GRATH using different 7B-LLMs and compare with LLMs with similar or even larger sizes on benchmark datasets. Our results show that GRATH effectively improves LLMs’ truthfulness without compromising other core capabilities. Notably, GRATH achieves state-of-the-art performance on TruthfulQA, with MC1 accuracy of 54.71% and MC2 accuracy of 69.10%, which even surpass those on 70B-LLMs. The code is available at https://github.com/chenweixin107/GRATH.
more »
« less
- Award ID(s):
- 2229876
- PAR ID:
- 10575572
- Publisher / Repository:
- International Conference on Machine Learning (ICML 2024)
- Date Published:
- Format(s):
- Medium: X
- Location:
- Vienna, Austria
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Does prompting a large language model (LLM) like GPT-3 with explanations improve in-context learning? We study this question on two NLP tasks that involve reasoning over text, namely question answering and natural language inference. We test the performance of four LLMs on three textual reasoning datasets using prompts that include explanations in multiple different styles. For these tasks, we find that including explanations in the prompts for OPT, GPT-3 (davinci), and InstructGPT (text-davinci-001) only yields small to moderate accuracy improvements over standard few-show learning. However, text-davinci-002 is able to benefit more substantially. We further show that explanations generated by the LLMs may not entail the models' predictions nor be factually grounded in the input, even on simple tasks with extractive explanations. However, these flawed explanations can still be useful as a way to verify LLMs' predictions post-hoc. Through analysis in our three settings, we show that explanations judged by humans to be good---logically consistent with the input and the prediction---more likely cooccur with accurate predictions. Following these observations, we train calibrators using automatically extracted scores that assess the reliability of explanations, allowing us to improve performance post-hoc across all of our datasets.more » « less
-
As large language models (LLMs) are adopted as a fundamental component of language technologies, it is crucial to accurately characterize their performance. Because choices in prompt design can strongly influence model behavior, this design process is critical in effectively using any modern pre-trained generative language model. In this work, we focus on LLM sensitivity to a quintessential class of meaning-preserving design choices: prompt formatting. We find that several widely used open-source LLMs are extremely sensitive to subtle changes in prompt formatting in few-shot settings, with performance differences of up to 76 accuracy points when evaluated using LLaMA-2-13B. Sensitivity remains even when increasing model size, the number of few-shot examples, or performing instruction tuning. Our analysis suggests that work evaluating LLMs with prompting-based methods would benefit from reporting a range of performance across plausible prompt formats, instead of the currently-standard practice of reporting performance on a single format. We also show that format performance only weakly correlates between models, which puts into question the methodological validity of comparing models with an arbitrarily chosen, fixed prompt format. To facilitate systematic analysis we propose FormatSpread, an algorithm that rapidly evaluates a sampled set of plausible prompt formats for a given task, and reports the interval of expected performance without accessing model weights. Furthermore, we present a suite of analyses that characterize the nature of this sensitivity, including exploring the influence of particular atomic perturbations and the internal representation of particular formats.more » « less
-
Hallucinations in large language models (LLMs), where they generate fluent but factually incorrect outputs, pose challenges for applications requiring strict truthfulness. This work proposes a multi-faceted approach to detect such hallucinations across various language tasks. We leverage automatic data annotation using a proprietary LLM, fine-tuning of the Mistral-7B-instruct-v0.2 model on annotated and benchmark data, role-based and rationale-based prompting strategies, and an ensemble method combining different model outputs through majority voting. This comprehensive framework aims to improve the robustness and reliability of hallucination detection for LLM generations. Code and data1 1 Introduction The modern natural language generation (NLG) (OpenAI et al., 2023; Touvron et al., 2023) landscape faces two interconnected challenges: firstly, current neural models have a tendency to produce f luent yet inaccurate outputs, and secondly, our evaluation metrics are better suited for assessing f luency rather than correctness(Bang et al., 2023; Guerreiro et al., 2023). This phenomenon, known as "hallucination," (Ji et al., 2023) where neural networks generate plausible-sounding but factually incorrect outputs, is a significant hurdle, especially for NLG applications that require strict adherence to correctness. For instance, in machine translation(Lee et al., 2019), producing a fluent translation that deviates from the source text’s meaning renders the entire translation pipeline unreliable. This issue may arise as LLMs are trained on vast amounts of data from the internet, which can contain inaccuracies, biases, and false information. Also, it may arise due improper representations learned during training even if good quality data is 1https://github.com/souvikdgp16/shroom_compos_mentis used. As a result, LLMs can sometimes hallucinate or fabricate details, especially when prompted to discuss topics outside their training data or make inferences beyond their capabilities. Hallucination detection (Liu et al., 2022), also known as factual verification or truthfulness evaluation, identifies and mitigates these hallucinations in the outputs of LLMs. This is an active area of research and development, as it is crucial for ensuring the reliability and trustworthiness of LLMgenerated content, particularly in high-stakes domains such as healthcare, finance, and legal applications. In this task, the primary focus will be to classify whether a generation is hallucinated. This work proposes a multi-faceted approach to detecting hallucinations in large language models.more » « less
-
Large Language Models (LLMs) are increasingly used for accessing information on the web. Their truthfulness and factuality are thus of great interest. To help users make the right decisions about the information they get, LLMs should not only provide information but also help users fact-check it. Our experiments with 80 crowdworkers compare language models with search engines (information retrieval systems) at facilitating fact-checking. We prompt LLMs to validate a given claim and provide corresponding explanations. Users reading LLM explanations are significantly more efficient than those using search engines while achieving similar accuracy. However, they over-rely on the LLMs when the explanation is wrong. To reduce over-reliance on LLMs, we ask LLMs to provide contrastive information - explain both why the claim is true and false, and then we present both sides of the explanation to users. This contrastive explanation mitigates users' over-reliance on LLMs, but cannot significantly outperform search engines. Further, showing both search engine results and LLM explanations offers no complementary benefits compared to search engines alone. Taken together, our study highlights that natural language explanations by LLMs may not be a reliable replacement for reading the retrieved passages, especially in high-stakes settings where over-relying on wrong AI explanations could lead to critical consequences.more » « less
An official website of the United States government

